3 tph jaw crusher and ball mill primary crusher major

crusher efficiency calculations

The following example demonstrates a method of selecting the components of an aggregate plant. Good component efficiency and part performance pre-evaluation is essential to a solid design. The aggregate production requires the consideration of several crushers, feeders and screens. This is not intended to be a typical situation, though it does involve common crusher and screen units often used in aggregate plants.

Quarry rock of 12 in. maximum size is to be handled in a two-stage crusher plant at the rate of 70 tons per hour. The maximum size of output is to be 1 in., and separation of materials over 1 in. size and the minus 1 in. in the output is required. Select a jaw crusher like those included in this table.

The screens to be considered are a 1-in. screen with an estimated capacity of 2.7 tph/sq ft and a 1-in. screen with a capacity of 2.1 tph/sq ft. The solution will include the selection of adequate and economical crushers for the two stages and the sizes of screens between them and below the secondary stage.

For the primary crusher a jaw crusher will probably be most economical. A jaw crusher, like 2036 in the Jaw Crusher Table here above, would be able to take the maximum 12 in. size quarry stone but it would not have the required 70 tph capacity needed. To have the needed capacity a jaw crusher like the 2042 or 2436 sizeswill have to be selected overloading the secondary crusher.

A grid chart or curve for the selected crusher shows that, for a 2-in. setting, 54% of the material will pass a 1-in. screen, or 46% will be retained (this is like Jaw Crusher capacity table abovewhere 48% passes a 1 in. screen). The 46% of 70 tph gives the 32 tph fed to the secondary crusher shown in Figure below as a roll crusher.

A twin-roll crusher is selected, like those given inthe Roll Crusher capacityTable above, to serve as the reduction crusher. The smallest, 24 x 16 roll crusher shown in theRoll Crusher capacity Table above has enough capacity with a setting of 1 in. but the maximum size feed will be too large, that is, the stage of reduction is not large enough. The maximum size of feed coming from the discharge of the primary crusher with a setting of 2 is about 3 in. as may be found in this Table.

Considering a 30-in. diameter roll crusher the maximum size particle that can be nipped with the roll crusher set at 1 in. according to this Equation is F = 0.085(15) + 1.0 = 2.28 in. <3 in. feed. It will take larger than a 40-in. diameter roll crusher. A better solution would be to use a larger jaw crusher set at 1 in., then a roll crusher from the Roll Crusher capacityTable above could be used. If the output of this crushing process should have less material of the +1-in. size, the larger crusher could be operated with a closed circuit. That is, the oversize in the output could be recirculated through the roll crusher without exceeding the rated capacity of the crusher. Then all material leaving that crusher with a 1-in. setting would be of a minus 1-in. size.

Another possible solution to this problem would be to use a gyratory crusher for the primary crushing stage. A gyratory like Telsmith model1110 could be set at 1 in. in an open circuit with a capacity for 260 tph. The maximum size of stone in the output is estimated to be approximately 2 1/8 in. Then all the output from the primary crusher could be nipped by a 40 in. diameter twin-roll crusher with a 1-in. setting according to the Roll Crusher capacityTable above. The specifications and manufactured limitations, rather than economy, generally govern the selection of crushers.

To find the required areas of screen, the rate of feed of material as well as gradation of the feed must be known. The 1-in. screen under the jaw crusher is the top deckno deck correction factor will be necessary. Therefore, the 1-in. screen will need to be at least 70/2.7 = 29.9 sq ft in area. It must be at least 36 in. wide for an 18 x 36 jaw crusher. So a 4-ft by 8-ft screen would be acceptable. The 1-in. screen is a second deck for the 38 tph from the jaw crusher, so the deck correction factor is 0.90 and that screen capacity is 2.1 x 0.9 = 1.89 tph/sq ft.

The screen area needed under the jaw crusher is 38/1.89 = 20.1 sq ft. For the 1-in. screen below the roll crusher the capacity has no correction factor and the area needed is 32/2.1 = 15.2 sq ft. To handle the output from a 40 x 24 roll crusher the screen will have to be at least 24 in. wide. Perhaps it will be more effective to use one continuous screen of at least 20.1 + 15.2 = 35.3 sq ft. A 4-ft by 10-ft 1 in. screen should be satisfactory.

jaw crusher - eastman rock crusher

Jaw crusher is a compression style rock crusher, useful in crushing the medium-hard to very hard material into a smaller particle size at primary crushing stage in the crushing circuit.Applicationsmining, quarry, construction waste recycling, aggregate making, etc.MaterialsLimestone, cobblestone, cobblestone, quartz, basalt, iron ore, granite, shale, sandstone, gypsum, and a variety of ores.

Eastman provides you with complete rock crushers and full list of components, original jaw crusher parts, form and function are a perfect fit.If your equipment breaks down, the productivity of the whole factory will be threatened. Critical wear parts are shipped with the goods to ensure they are available when you need them and to reduce maintenance time.Wear parts:

ball mill for sale | grinding machine - jxsc mining

Ball mill is the key equipment for grinding materials. those grinding mills are widely used in the mining process, and it has a wide range of usage in grinding mineral or material into fine powder, such as gold, ironzinc ore, copper, etc.

JXSC Mining produce reliable effective ball mill for long life and minimum maintenance, incorporate many of the qualities which have made us being professional in the mineral processing industry since 1985. Various types of ball mill designs are available to suit different applications. These could include but not be restricted to coal mining grate discharge, dry type grinding, wet mineral grinding, high-temperature milling operations, stone & pebble milling.

A ball mill grinds ores to an end product size of thirty-five mesh or finer. The feeding material to a ball mill is treated by: Single or multistage crushing and screening Crushing, screening, and/or rod milling Primary crushing and autogenous/semi-autogenous grinding.

Normal feed sizes: eighty percent of six millimeters or finer for hard rocker eighty percent of twenty-five millimeters or finer for fragile rocks (Larger feed sizes can be tolerated depending on the requirements).

The ratio of machine length to the cylinder diameter of cylindrical type ball mills range from one to three through three to one. When the length to diameter ratio is two to one or even bigger, we should better choose the mill of a Tube Mill.

Grinding circuit design Grinding circuit design is available, we experienced engineers expect the chance to help you with ore material grinding mill plant of grinding circuit design, installation, operation, and optimization. The automatic operation has the advantage of saving energy consumption, grinding media, and reducing body liner wear while increasing grinding capacity. In addition, by using a software system to control the ore grinding process meet the requirements of different ore milling task.

The ball mill is a typical material grinder machine which widely used in the mineral processing plant, ball mill performs well in different material conditions either wet type grinding or dry type, and to grind the ores to a fine size.

Main ball mill components: cylinder, motor drive, grinding medium, shaft. The cylinder cavity is partial filling with the material to be ground and the metal grinding balls. When the large cylinder rotating and creating centrifugal force, the inner metal grinding mediums will be lifted to the predetermined height and then fall, the rock material will be ground under the gravity force and squeeze force of moving mediums. Feed material to be ground enters the cylinder through a hopper feeder on one end and after being crushed by the grinding medium is discharged at the other end.

Mining Equipment Manufacturers, Our Main Products: Gold Trommel, Gold Wash Plant, Dense Media Separation System, CIP, CIL, Ball Mill, Trommel Scrubber, Shaker Table, Jig Concentrator, Spiral Separator, Slurry Pump, Trommel Screen.