30 tph gold ball mill unit

rp-4 gold shaker table sale

The RP-4 shaker table is the most widely used and most successful gold gravity shaking concentrating table worldwide, used by small and large mining operations and the hobbyist. The patented RP-4 is designed for separation of heavy mineral and gemstone concentrate. The RP-4 table can process up to 600 (typically 400) lbs. per hour of black sand magnetite or pulverised rock with little to no losses. The RP-4 uses a unique reverse polarity of rare earth magnets, which will cause the magnetite to rise and be washed off into the tails. This allows the micron gold to be released from the magnetite, letting the gold travelling to the catch. The RP-4 is compact and weighs 60 lbs. With a small generator and water tank, no location is too remote for its use. The RP-4 is a complete, ready to go gold recovery machine. THERE ARE NO SCREEN INCLUDED with the small shaking table. Use was reservoirsgreater than 250 gallon and recycle all your water. Only 400 Watt of power drawn by typical pump. The small RP4 gold shaking has a mini deck of 13wide x 36 long = 3.25 square feet of tabling area. The RP-4 is the best and longest selling small miner shaker table still on the market today. With many 1000s of units sold during the last 10 years! Review the RP-4 Operating Manual and Installation Guide lower on this page.

The RP-4 uses a unique reverse polarity of rare earth magnets which will cause the magnetite to rise and be washed off into the tails and allowing the micron gold to be released from the magnetite leaving the gold travelling to the catch.

When assembling the RP-4, it is very important to set it up correctly to get the best recovery. The unit needs to be bolted preferably to a concrete pad or bedrock when in the field. It can be weighted down with seven or eight large sandbags. Wooden stands will set up harmonics and vibrations in the unit. Vibrations will create a negative effect on the concentrating action of the deck and create a scattering effect on the gold. We would strongly advise getting the optional stand to mount it. See a detailed RP4 Shaker Table review.

Once you have the RP-4 mounted or weighted down, you will want to level it, place a level under the machine on the bar running attached to the two mounting legs. Use washers to get a precise level adjustment. Once mounted and leveled, use the adjustment screw to adjust the horizontal slope of the deck. It took me about 10 minutes of playing with the adjustment till you are satisfied the slope angle was where it needed to be. A general rule for good recovery is less grade for the table deck and as much water as possible without scouring off the fine gold particles.

When the table is set, wet down your black sand concentrates with water and a couple drops of Jet-Dry to help keep any fine gold from floating off the table. You are now ready to start feeding the RP-4.

DO NOT dump material into the feed tray. You want a nice steady feed without overloading the table. Use a scoop and feed it steadily. Watch the back where the small gold should concentrate. If you see fine gold towards the middle, adjust your table angle just a bit at a time till it is where it needs to be.

Run a few buckets of black sand tailings that already panned out just in case there might have been some gold left behind. Its a good thing, too, because I pulled almost three pennyweights of gold out of my waste materials. Thats a pennyweight per bucket!

You could run all of you concentrates over this awesome little RP-4 Gravity Shaker Table. Some ran bottles No. 1 and No. 2 over the table a second time and cleaned it up some more, getting out almost all of the sand in No. 1 and removing more than half the sand from No. 2. It was amazing to see a nice line of fine gold just dancin down the table into the bottle. And, to think you were was about to throw away all of that black sand that still had color in it! This machine is small enough for the prospector and small-scale miner who, like me, wants all of the gold for his or her hard work. The 911MPE-RP-4 Gravity Shaker Table is also big enough to clean up bucket after bucket of concentrates from a big operation! The RP4 people came up with the solution for getting all of the gold!

All RP4 shaker tables operate best when firmly secured to a dense solid mounting base. Wooden stands will set up harmonics and vibrations. Dense concrete or solid bedrock is preferred or a heavy braced steel table sitting on concrete. Mount shaker table to solid bed rock if possible when operating in the field. When that is not an option, six or seven sand bags may also be used if concrete or bedrock is not available for mounting.

Place a level on top of the steel bar that extends between the two bolts down mounting feet.Use flat washers installed under either end of the mounting feet for precise level adjustment in the long axis.

At no time should sand or slime be re-circulated back with mill water. Large, calm, surface areas are required to settle slimes. Buckets, barrels or any deep containers with turbulent water will not allow slimes to settle. Tailings should discharge into a tails pond or into a primary holding vessel before entering slime settling ponds. Surface area is more important than depth. A small 10 x 20 ft. settling pond can be installed in about 30 minutes. Shovel a 6 high retainer wall of earth and remove all gravel. Lay a soft bed of sand in the bottom. A small raised wall area (with the top approximately 2 blow water level) should be placed around the pump area. Roll out plastic liner and fill with water. Desert areas require a plastic cover to retard evaporation. Use a 24 wood across pond and lay plastic.

As with ponds, at no time should sand or slime be re-circulated back with mill water. A calm surface is needed in the final two barrels to settle slimes. (In lieu of the last two barrels, the discharge from barrel two may be directed to a settling pond as outlined above.)Turbulent water will not allow slimes to settle. Tailings are discharged into the first container.

A small compact tailings thickener introduces tailings feed at a controlled velocity in a horizontal feed design that eliminates the conventional free settling zone. The feed particles quickly contact previously formed agglomerates. This action promotes further agglomeration and compacting of the solids. Slowly rotating rakes aid in compacting the solids and moving them along to the discharge pipe, these solids are eventually discharged at the bottom of the unit. Under flow from the thickener 60-65% solids are processed through a vacuum filter and a90-95% solids is sent to the tailings area. Tailings thickeners are compact and will replace ponds. A 23 ft. diameter will process flow rates at 800 gpm or 50 tph.

Pine oils and vegetation oils regularly coat the surface of placer gold. Sometimes up to 50% of the smaller gold will float to the surface and into the tails. The pine oil flotation method for floating gold is still in use today. A good wetting agent will aid in the settling and recovery of oil coated gold.

Separation of concentrate from tails Minerals or substances that differ in specific gravity of2.5 or to an appreciable extent, can be separated on shaker tables with substantially complete recovery. A difference in the shape of particles will aid concentration in some instances and losses in others. Generally speaking, flat particles rise to the surface of the feed material while in the presence of rounded particles of the same specific gravity. Particles of the same specific gravity but varying in particle size, can be separated to a certain extent, varying in particle size, can be separated to a certain extent, removing the larger from the smaller, such as washing slime from granular products.

Mill practice has found it advantageous in having the concentrate particles smaller than the tailing product. Small heavy magnetite particles will crowd out larger particles of flat gold making a good concentrate almost impossible with standard gravity concentrating devices. The RP-4 table, using rare earth reverse polarity magnets, overcame this problem by lifting the magnetite out and above the concentrate material thus allowing the magnetite to be washed into the tails. This leaves the non-magnetics in place to separate normally.

No established mathematical relationship exists for the determination of the smallest size of concentrate particle and the largest size of tailing particle that can be treated together. Other factors, such as character of feed material, shape of particles, difference in specific gravity, slope or grade of table dock and volume of cross flow wash water will alter the final concentrate.

Size of feed material will determine the table settings. Pulverized rod mill pulps for gravity recovery tables should not exceed 65-minus to 100-minus 95% except where specific gravity, size, and shape will allow good recovery. Recovery of precious metals can be made when processing slime size particles down to 500-minus, if the accompanying gangue is not so coarse as to require excessive wash water or excessive grade to remove the gangue, (pronounced gang), to the tails. Wetting agents must be used for settling small micron sized gold particles. Once settled, 400-minus to 500 minus gold particles are readily moved and saved by the RP-4shaker table head motion. Oversized feed material will require excess grade to remove the large sized gangue,thus forcing large pieces of gold further down slope and into the middling. Too much grade and the fine gold will lift off the deck and wash into the tailings. Close screening of the concentrate into several sizes requires less grade to remove the gangue and will produce a cleaner product. A more economical method is to screen the head ore to window screen size (16-minus) or smaller and re-run the middling and cons to recover the larger gold. This concept can be used on the RP-4 shaker tables and will recover all the gold with no extra screens. A general rule for good recovery is less grade for the table deck and as much was water as possible without scouring off the fine gold. Re-processing on two tables will yield a clean concentrate without excess screening. Oversized gold that will not pass through window screen size mounted on RP-4 shaker tables, will be saved in the nugget trap. Bending a small 1/4 screen lip at the discharge end of the screen will trap and save the large gold on the screen for hand removal.

On the first run, at least one inch or more of the black concentrate line should be split out and saved into the #2 concentrate bin. This concentrate will be re-run and the clean gold saved into the #1 concentrate pocket. Argentite silver will be gray to dull black in color and many times this product would be lost in the middling if too close of a split is made.

The riffled portion of the RP-4 shaker table separates coarse non-sized feed material better than the un-riffled cleaning portion. Upon entering the non-riffled cleaning plane, small gangue material will crowd out and force the larger pieces of gold further down slope into the middling. Screen or to classify.

The largest feed particles should not exceed 1/16 in size. It is recommended that a 16-minus or smaller screen be used before concentrating on the RP-4 shaker table, eliminating the need for separate screening devices. Perfect screen sizing of feed material is un-economical, almost impossible, and is not recommended below 65-minus.

A classified feed is recommended for maximum recovery, (dredge concentrates, jig concentrates, etc.) The weight of mill opinion is overwhelmingly in favor of classified feed material for close work. Dredge concentrates are rough classified and limiting the upper size of table feed by means of a submerged deck screen or amechanical classifier is all that is necessary. A separate screen for the sand underflow is used for improved recovery when using tables.

Head feed capacity on the RP-4 tables will differ depending on the feed size, pulp mixture and other conditions. Generally speaking, more head feed material may be processed when feeding unclassified, larger screened sized material and correspondingly, less material may be processed when feeding smaller sized classified rod or ball mill pulps. Smaller classified feed material will yield a cleaner concentrate. Ultimately, the shape of the feed material particles and a quick trial test will determine the maximum upper size.

The width between the riffles of the RP-4 table is small and any particle over 1/8 may cause clogging of the bedding material. A few placer operators will pass 1/8 or larger feed material across the RP-4 table, without a screen, with the intent of making a rough concentrate for final clean up at a later date. This method will work, but excess horizontal slope/grade of the table deck must not be used as some losses of the precious metals will occur. Magnetite black sands feed material, passing a 16-minus screen (window screen size if 16-minus + or -) will separate without losses and make a good concentrate at approximately 500 to 600lbs feed per hour for the RP-4. Head feed material must flow onto the RP-4 screen, at a constant even feed rate. An excess of head feed material placed onthe table and screen at a given time will cause some gold to discharge into the tailings nugget trap. Head feed material should be fed at the end of the water bar into the pre-treatment feed sluice. Do not allow dry head feed material to form thick solids. The wash water will not wash and dilate the head feed material properly, thus allowing fine gold to wash into the tails.

Feed material should disperse quickly and wash down slope at a steady rate, covering all the riffles at the head end,washing and spilling over into the tails trough. A mechanical or wet slurry pump feeder (75% water slurry) is recommended for providing a good steady flow of feed material. This will relieve the mill operator of a tedious chore of a constantly changing concentrate line when hand feeding.

Eight gallons of water per minute is considered minimum for black sands separation/concentration on the RP-4 shaker table. 15 gallons of water per minute is consideredoptimum and will change according to feed material size, feed volume and table grade. A 1 inch hose will pass up to 15 gpm, for good recovery, wash water must completely cover the feed material 1/4 or more on the screen.

The PVC water distribution bar is pre-drilled with individual water volume outlets, supplying a precision water flow. Water volume adjustment can be accomplished by installing a 1 mechanical PVC ball valve for restricting the flow of water to the water distributing holes. Said valve may be attached between the garden hose attachment and water distributing bar.

More water at the head end and less water at the concentrate end is the general rule for precise water flow. More feed material will occupy the head end of the RP-4 shaker table deck in deep troughs and less material will occupy the concentrate end on the cleaning plane. A normal water flow will completely cover the feed material over the entire table and flow with no water turbulence.

A rubber wave cloth is installed to create a water interface and to smooth out all water turbulence. This cloth is installed with holes. Holes allow water to run underneath and over the top of the cloth and upon exiting will create a water interface smoothing out all the water turbulence. Bottom of water cloth must contact the deck.

Avoid excessive slope and shallow turbulent water.For new installations, all horizontal grade/slope adjustments should be calculated measuring from the concentrate end of the steel frame to the mounting base. For fine gold, the deck should be adjusted almost flat.

All head feed must be fed as a 75% water pulp. Clean classified sand size magnetite will feed without too much problem when fed dry. Ground rod or ball mill feed material 65-minus or smaller must be fed wet, (75% water slurry by weight or more) and evenly at a constant rate, spilling over into the tails drain troughat the head end of the table. Feed material without sufficient water will not dilute quickly andwill carry concentrate too far down slope or into the tails. A good wet pulp with a deflocculant and a wetting agent will aid the precious metals to sink and trap within the first riffles, thus moving onto the cleaning plane for film sizing. Round particles of gold will sink instantly and trap within the first riffles. The smaller flat gold particles will be carried further down slope to be trapped in the mid riffles. Potential losses of gold can occur if the table deck is overloaded by force feeding at a faster rate than the smaller flat gold can settle out. Under-feeding will result in the magnetites inability to wash out of the riffles, thus leaving a small amount of magnetiteconcentrated with the gold. A small addition of clean quartz sand added to a black sand concentrate will force the magnetite to the surface and will aid in its removal. Slimes require a separate table operation.

In flotation, surface active substances which have the active constituent in the positive ion. Used to flocculate and to collect minerals that are not flocculated by the reagents, such as oleic acid or soaps, in which the surface active ingredient is the negative ion. Reagents used are chiefly the quaternary ammonium compounds, for example, cetyl trimethyl ammonium bromide.

A substance composed of extremely small particles, ranging from 0.2 micron to 0.005 micron, which when mixed with a liquid will not gravity separate or settle, but remain permanently suspended in solution.

A crusher is a machine designed to reduce large rocks into smaller rocks, gravel, or rock dust. Crushers may be used to reduce the size, or change the form, of waste materials so they can be more easily disposed of or recycled, or to reduce the size of a solid mix of raw materials (as in rock ore), so that pieces of different composition can be differentiated. Crushing is the process of transferring a force amplified by mechanical advantage through a material made of molecules that bond together more strongly, and resist deformation more, than those in the material being crushed do. Crushing devices hold material between two parallel ortangent solid surfaces, and apply sufficient force to bring the surfaces together togenerate enough energy within the material being crushed so that its molecules separate from (fracturing), or change alignment in relation to (deformation), each other. The earliest crushers were hand-held stones, where the weight of the stone provided a boost to muscle power, used against a stone anvil. Querns and mortars are types of these crushing devices.

A basic alkali material, such as sodium carbonate or sodium silicate, used as an electrolyte to disperse and separate non-metallic or metallic particles. Added to Slip to increase fluidity. Used to aid in the beneficiation of ores, to convert into individual very fine particles, creating a state of colloidal suspension in which the individual particles of gold will separate from clay or other particles. This condition being maintained by the attraction of the particles for the dispersing medium, water, purchase at any chemical house.

Manner in which the intensity and direction of an electrical or magnetic field change as a function of time that results from the superposition of two alternating fields, (+/-) that differ in direction and in phase.

The smelting of metallic ores for the recovery of precious metals, requiring a furnace heat. Each milligram of recovered precious metal is gravimetric weighed and reported as one ounce pershort ton. Atomic Absorption (AA finish) is the preferred method for replacing the gravimetric weighing system.

A reagent added to a dispersion of solids in a liquid to bring together the fine particles to form flocs and which thereby promotes settling, especially in clays and soils. For example, lime alters the soil pH and acts as a flocculent in clay soils. Acid reagents and brine are also used as a flocculent.

The method of mineral separation in which a froth created in water with air and by a variety of reagents floats some finely crushed minerals, whereas other minerals sink. Separate concentrates are made possible by the use of suitable depressors and activators.

An igneous oxide of iron, with a specific gravity of 5.2 and having an iron content of 65-70% or more. Limonite crystals, sometimes mistaken for magnetite, occurs with the magnetite and sometimes may contain gold. Vinegar will remove gold locked in limonite coated magnetite.

In materials processing a grinder is a machine for producing fine particle size reduction through attrition and compressive forces at the grain size level. See also CRUSHER for mechanisms producing larger particles. Since the grinding process needs generally a lot of energy, an original experimental way to measure the energy used locally during milling with different machines was proposed recently.

A typical type of fine grinder is the ball mill. A slightly inclined or horizontal rotating cylinder is partially filled with balls, usually stone or metal, which grinds material to the necessary fineness by friction and impact with the tumbling balls. Ball mills normally operate with an approximate ball charge of 30%. Ball mills are characterized by their smaller (comparatively) diameter and longer length, and often have a length 1.5 to 2.5 times the diameter. The feed is at one end of the cylinder and the discharge is at the other. Ball mills are commonly used in the manufacture of Portland cement and finer grinding stages of mineral processing. Industrial ball mills can be as large as 8.5 m (28 ft) in diameter with a 22 MW motor, drawing approximately 0.0011% of the total worlds power. However, small versions of ball mills can be found in laboratories where they are used for grinding sample material for quality assurance.

A rotating drum causes friction and attrition between steel rods and ore particles. But note that the term rod mill is also used as a synonym for a slitting mill, which makes rods of iron or other metal. Rod mills are less common than ball mills for grinding minerals.

Screening is the separation of solid materials of different sizes by causing one component to remain on a surface provided with apertures through which the other component passes. Screen size is determined by the number of openings per running inch. Wire size will affect size of openings. -500=500 openings per inch is maximum for gravity operations due to having a solid disperse phase.

Long established in concentration of sands or finely crushed ores by gravity. Plane, rhombohedra deck is mounted horizontally and can be sloped about its axis by a tilting screw. Deck is molded of ABS plastic, and has longitudinal riffles dying a discharge end to a smooth cleaning area. An eccentric is used to create a gentle forward motion, compounded to full speed and a rapid return motion of table longitudinally. This instant reverse motion moves the sands along, while they are exposed to the sweeping and scouring action of a film of water flowingdown slope into a launder trough and concentrates are moved along to be discharged at the opposite end of the deck.

A material of extremely fine particle size encountered in ore treatment, containing valuable ore in particles so fine, as to be carried in suspension by water. De-slime in hydrocyclones before concentrating for maximum recovery of precious metals.

A mixture of finely divided, micron/colloidal particles in a liquid. The particles are so small that they do not settle, but are kept in suspension by the motion of molecules of the liquid. Not amenable to gravity separation. (Bureau of Mines)

Flotation process practiced on a shaking table. Pulverized ore is de-slimed, conditioned with flotation reagents and fed to table as a slurry. Air is introduced into the water system and floatable particles become glom rules, held together by minute air bubbles and positive charged edge adhesion. Generated froth can be discharged into the tailings launder trough or concentrates.

The parts, or a part of any incoherent or fluid material separated as refuse, or separately treated as inferior in quality or value. The gangue or valueless refuse material resulting from the washing, concentration or treatment of pulverized head ore. Tailings from metalliferous mines will appear as sandy soil and will contain no large rock, not to be confused with dumps.

A substance that lowers the surface tension of water and thus enables it to mix more readily with head ore. Foreign substances, such as natural occurring pine oils, vegetation oils and mill grease prevent surface wetting and cause gold to float. Addition agents, such as detergents, (dawn), wetting out is a preliminary step in deflocculating for retarding gold losses.

RP4 shaker table for sale mini gold shaker table RP4 shaker table instructions RP4 shaker table dimensions RP4 gold shaker table RP 4 gravity shaker table utech RP4 shaker table RP 4 gravity shaker table price used RP4 shaker table for sale

Global mining solutions warrants that all mining equipment manufactured will be as specified and will be free from defects in material and workmanship for a period of one year for the RP-4. Providing that the buyer heeds the cautions listed herein and does not alter, modify or disassemble the product, gms liability under this warranty shall be limited to the repair or replacement upon return to gms if found to be defective at any time during the warranty. In no event shall the warranty extend later than the date specified in the warranty from the date of shipment of product by GMS. Repair or replacement, less freight, shall be made by gms at the factory in Prineville, Oregon, USA.

All bearings are sealed and no grease maintenance is required. Do not use paint thinners, or ketones to clean your deck. A small amount of grease should be applied to the adjustable handle which is used for the changing the slope of the deck.

Do not allow the RP-4 to stand in direct sunlight without water. Always keep covered and out of the sun when not in use. Heat may cause the deck to warp. Do not lift or pull on the abs plastic top, always lift using the steel frame. Do not attach anything to the abs plastic top. Do not attach PVC pipe to concentrate discharge tubes, constant vibration from the excess weight will cause stress failure of the plastic.

birla shakti

KIL Cement Division is an award-winning cement manufacturer and is one of the nation's largest producers to provide high quality products and reliable services to our clients and communities throughout India. Discover our manufacturing footprint, products, innovation methods, portfolio and our philosophies along the way.

Founded in 1969, Birla Shakti is one of the global leaders in cement technology. Besides being a leading supplier of cement and aggregates, we also offer consulting, research, trading, engineering and other services to complement our customers business needs. Our headquarters is in India and we have production sites in several parts of the country.

Under the cement division of Kesoram Industries Limited, Birla Shakti manufactures and sells cement. We are widely recognised for our quality, strength and technology, which has enabled us to build strong working relationships and gain the trust of our customers and builders. As a mark of our quality management best practices, we have been certified an ISO 9001 company.

Birla Shakti has two cement manufacturing plants located at Sedam, Karnataka (the "Vasavadatta Cement Plant") and Basantnagar, Andhra Pradesh (the "Kesoram Cement Plant"). Our cement business has been in operation for over 40 years, catering to the regional demands predoimnently in Karnataka, Andhra Pradesh and Maharashtra. Our plants are strategically located near our leased limestone deposits in the states of Karnataka and Andhra Pradesh. Presently, we have a combined total installed capacity of 7.25 million MT.

Create long-term value for our stakeholders through passionate commitment to excellence, by being customer focused, bringing total employee involvement, disciplined and innovative management process to drive sustained competitive advantage

Each of our milestones reflected in the timeline is a reflection of our passion, dedication and persistence in Total Productivity Maintenance (TPM). And in this short period of time, we at Kesoram Cement and Vasavadatta Cement have grown from strength to strength emerging as leaders of the cement industry.

Cement is a binder thats used to produce concrete. There are various types of cement for use in different applications. The properties of cement can also be varied through additives. Find out more about how we make our cement.

We are constantly finding innovative ways to improve our cement production process to better deliver solutions and products. The reason is simple: we believe in creating value and addressing our clients needs in todays ever-changing business climate. Our goal is to be the industry leader in innovation and technology, and contribute to building livable urban landscapes.

Special emphasis is placed on Research & Development facilities to reduce thermal, electrical energy and overall CO2 emissions. Each division of Birla Shakti has a well-equipped, advanced R&D department to pursue product and process improvements related to that division, as well as monitor thermal and electrical energy efficiency. Each R&D department is staffed with around 20 highly qualified researchers.

Infrastructure, growth, discipline and integrity our business is built on these very essentials. As an ISO 9001, 14001, 18001 and 50001 company, we take care of the land and the community through the entire cycle of cement manufacturing use from mining to clinkerisation.

One of the main reasons for our tremendous success in the Indian market has been our reach across the nine highly industrialised states of Andhra Pradesh, Maharastra, Karnataka, Goa, Kerela, Madhya Pradesh, Telangana, Chattisgarh and Tamil Nadu.

Our dealer network in the trade segment comprises 2,000+ strong and loyal dealers across the territories. Most of these dealers have been associated with us for the last 35 years. This strong bond empowers us with the confidence and ability to grow further in this segment.

The key to sustaining economic growth lies in our belief, where we value our employees and their families, the environment we do business in, our esteemed customers, as well as the local communities we are surrounded by. We are convinced that social progress should be shared and enjoyed by all that KIL Cement Division is connected to. Learn more about how we are making this a reality.

At Birla Shakti, we are constantly exploring new technologies and initiatives to conserve the environment we work and live in. Being a responsible managed firm, we aspire to exceed market expectations across all sustainability issues and go beyond legal compliance to proactively reduce our environmental impacts.

Our plant generates both hazardous and non-hazardous waste during the manufacturing of cement. Major waste include used oil, used battery, MS scrap, PP burst bags, alumina fire brick, overburden in mine, etc.

However, we make constant efforts to recycle and reuse the waste generated out of our own operations and waste generated by other industries like pharma. Only waste that cannot be utilised effectively is being disposed off.

In managing our waste output, we are also utilising waste generated in other industries as alternative fuel for our manufacturing plants. We have a tie-up with the government of Goa to procure waste which will be used as alternate fuel input.

Concurrently, we are the first in India to install Hot Disc technology to help utilise and manage waste. Presently, we recycle and reuse Plastic waste, Carbon black powder, PU and upper cutting waste, shredded tyres /rubber chips, Municipal solid waste.

Co-processing in cement kiln perforce provides high temperature and long residence condition during the operation and is an effective technology for the management of hazardous waste in an environmentally friendly and safe manner.

It fully absorbs the energy and material value of the waste without any harmful emissions. Co-processing in cement kiln ranks higher in the waste management hierarchy as compared to other disposal options such as incineration and landfill.

Unlike incineration and landfill, co- processing does not leave behind any residue that might have harmful impact on the environment. Thus, co-processing is an ecologically sustainable solution for waste management.

Fresh water is a scarce resource and its alarming depletion in Gulbarga and Basant Naagr has led to our increased focus on effective water management through conservation, reduction in leakage or wastage and recycling & reuse.

We strive to spread awareness on conserving water in our operations and families of employees, by implementing a number of water harvesting and recycling and reuse projects, so as to minimise the consumption of fresh water.

Furthermore, the sump developed in the mine pit is utilised for storage of rain water for later use in the process during lean period. The amount of rainwater collected depends on the rainfall, as well as the catchment area, where the water will be diverted to the mine pit (Sump).

For this purpose, garland drains are cut around the quarry on the higher profile of the land to channel rainwater from the catchment area. This water is then directed to the mine pit by opening the drain at desirable places. The mine sump has been developed to a capacity of 40,00,000 m3.

We meet almost all our water requirements from ground water sources. However, we have also implemented initiatives for replenishing ground water through our water harvesting structures built at various locations within the plant premises, as well as in the vicinity of the manufacturing facilities.

To create a sustainable environment for our business and the community, we have designated a green belt development site at our plants for afforestation. So far, a total of 14,91,807 samplings have been planted and harvested.

Currently, the total area for afforestation at our plants is 860 acres within the plant, mine and colony premises. Our efforts in driving environmental conservation projects such as this reinforce our philosophy of sustainable development and caring for the community.

Underpinning life at Company is the Division Vision our statement of the company culture, which both informs and describes our behaviour. Development activities revolve around the under-privileged community that lives in the immediate vicinity of our cement plants.

The range of our activities begins with extending educational and medical facilities and goes on to cover vocational guidance and supporting employment-oriented and income-generation projects like agriculture, animal husbandry, cottage industries by developing local skills, using local raw materials and helping create marketing outlets. These are the key areas that we endeavour to make a difference in.

Each factory has a medical centre with full-fledged doctors and the latest basic equipment. Mobile medical services are provided in the vicinity and regular medical camps are held to eradicate diseases, offer medical help, treatment and preventive care.

We foster learning and knowledge through formal schools. Education is imparted not only to children of employees but also to children from rural areas, who do not have access to any medium of information or education.

Our schools maintain high standards and are open to other children of the vicinity. These schools are often the preferred centres of learning in the district and adjoining areas. Our goal is to give everyone a chance at having an education.

We are encouraging the development of human capital by expanding human capabilities through skills development and vocational training, as well as by promoting excellence in indentified cultural fields. To achieve our objective, there is a dedicated training and development team that operates solely on such development intiatives.

Thank you for your interest in our company and products. If youre working on a media article, marketing collaterals, etc. and require high resolution images listed on this page, please select the images you required and request below.

Kesoram Industries Limited (Cement Division) offers employment opportunities in a wide range of functions. The recruitment process is fair and transparent, with adequate opportunities for suitable candidates both internally and from outside.

Recruitment is a continuous process in KIL Cement Division. We regularly hold interviews in principal cities of south and west India. In other cases, applicants are invited for specific vacancies announced through advertisements in leading newspapers or announced in this website.

Birla Shakti Cement, Division of Kesoram Industries Limited Unit: Vasavadatta Cement, Factory PO: Sedam Dist: Gulbarga Karnataka - 585222 Tel No.: +918441-276005/277403 Fax : +918441-276139 Email : [email protected] Birla Shakti Cement, Division of Kesoram Industries Limited Unit: Kesoram Cement, Factory PO: Basantnagar Dist: Peddapalli Telengana - 505187 Tel No.: +918728-228152/228252/228121/228129 Fax : +918728-228160/228444 Email : [email protected] SOLAPUR PACKING PLANT Plot No T3-MIDC Chincholi Industrial Area Taluka - Mohal Dist: Solapur Maharashtra - 413255

Plot No T3-MIDC Chincholi Industrial Area Taluka - Mohal Dist: Solapur Maharashtra - 413255

Cement Division Unit of Kesoram Industries Limited 44/A, Ground Floor, Bharath Apartments, Fair Field Layout, Race Course Road, Bangalore - 560001, Karnataka

new and used trommels for sale | gold trommel design & manufacturing by savona equipment

New and Used Gold Recovery Trommels for SaleSavona Equipment is your source for New, Used, and Reconditioned Trommels for recovering gold and other precious metals from placer mining operations. We supply 18 inch, 30 inch, 48 inch, 60 inch, & 7 foot Trommels for Placer Mining. Refurbished trommel parts will be fully repaired or replaced as required.Our Trommels and Gold Recovery Equipment are for sale worldwide. We sellPortable GoldTrommels, MiniWash Plants, andGoldTrommel Wash Plant.You Can Buy Various High Quality Gold Trommel Wash PlantProducts from various GoldTrommel Wash Plant manufacturers like Telsmith, McCloskey, Northern Placer, Aureco, Extrac-Tec as well as order a custom made gold recovery wash plant designed, manufactured, and distributedby Savona Equipment.

autogenous ag & sag mills for sale

Starting as small as 13 feet (4 m) in diameter on 330 HP and as large as 24 (14.5 m) in diameter on 3,300 HP, the 911MPE Semi & FullyAutogenous Mills tumble crushed ore without iron or steel grinding media. They are used when the crushed ore pieces are hard enough to perform all the grinding.SAG mills tumble mainly ore but they use up to 15% volume of steel balls to assist grinding. Semi-autogenous mills are more common.

The AG Millor SAG grinds primary crusher product and prepares it for final grinding in a ball mill. Its product is usually passed over a large vibrating screen to separate oversize pebbles from correct-size particles. The correct-size material is sent forward to a ball mill for final grinding. The oversize pebbles are recycled through a small eccentric crusher, then back to the SAG orautogenous grinding mill. This procedure maximizes ore throughput and minimizes electrical energy consumption.

The autogenous mill itself is a coarse-grinding device, consisting of tumbling drum with a 25% to 40% volume filling of ore. Metallic or manufactured grinding media is not used. Autogenous mills are fed run-of-mine ore or primary crusher product that is <25 cm (10). Inside the mill, largepieces break into smaller pieces a few inches in size. These natural pebbles act as the grinding media the autogenous mill. The main modes of breakage are thought to be impact breakage and abrasion.

Many circuit configurations are possible, but essentially the autogenous or SAG mill is operated as a single-stage primary mill, or it can be followed by secondary pebble or ball milling. The semi & autogenous mill is often operated in closed circuit with a trommel screen or external vibrating screen classifying the discharge. Circulating loads are low compared with those in ball mill circuits, because autogenous mills do not benefit from high-circulating loads in the same way ball mills do. Intermediate crushers are sometimes used to crush the largest pieces in the recycle stream.

Autogenous grinding implies by definition the grinding of ore by itself. Autogenous mills can be operated in tandem with secondary grinding mills (either a ball or a pebble mill) or they can be operated as single-stage mills in closed-circuit with a classification or sizing device. If a critical size builds up in the charge of the autogenous mill, it is usually extracted through pebble ports and crushed for recycle. Autogenous mills rely upon attrition grinding for their operation.

Disintegration and size reduction of some ores is possible in tumbling mills without the aid of grinding media. Grinding mills in which comminution takes place without grinding aids are known as Autogenous Grinding (AG) mills or Fully Autogenous Grinding mills (FAG). These mills use large lumps of rock as the grinding media. Mills that use intermediate size rock or pebbles as a grinding medium are also autogenous mills but are known as pebble mills.

The disintegration and size reduction of ores in AG mills is brought about by a combination of impact, attrition and abrasion forces during mill rotation. Particles at the toe of the mill charge receive the maximum impact forces from falling rocks and other grinding media. Particles in the body of the mill charge partly slide from different heights and are subjected to attrition and abrasion resulting in size reduction.

The operation of AG & SAG mills therefore involves the use of cheaper grinding media as a replacement for expensive steel balls and rods which greatly affect the wear on liners. They are therefore less expensive to operate. It is necessary that the ore should provide a sufficient amount of lumps that would last for a reasonable time to act as the grinding medium. Such ores have been described as competent ores. Ores that break up easily arc referred to as either non-competent or incompetent ore.

SAG Mill grinding relies on the addition of balls to the primary mill which are required to break up harder and coarser pieces and also to grind mid-size and and particles. It is used to grind ores which require fracturing across grain or crystalline boundaries in addition to attrition grinding. Again, circuits can be designed for either single or two-stage operation and occasionally a crusher might be added to deal with a buildup of particularly hard critical size material.

The feed to an autogenous or semi-autogenous mill is usually primary crushed. When considering the necessity to crush run-of-nine ore, the expected behaviour of the primary mill towards a coarser feed and the maximum lump size which is physically acceptable to the mill relative to that originating in run-of-mine ore have to be investigated.

Autogenous grinding work is conducted in a separate pilot setup. The crude ore is crushed to a maximum size of 9 in. and screened into 3 sizes. The primary mill is 5- ft. in diameter. The length can be varied from 2 ft. to 5 ft. in 4 and/or 11 in. increments. The secondary grinding circuit uses a 3 ft. diameter by 5 ft. long pebble or ball mill. Three hydroseparators ranging from 2 to 6 ft. in diameter and a 5 ft. thickener are used as required in the circuit. There are 3 types of filters and a variety of pumps, cyclones, screens, magnetic separators and the other auxiliary equipment required to complete the concentrating and material handling aspects of the pilot plant.

The pover draw of an autogenous mill is directly proportional to the charge volume, which, in turn, is maintained by feed rate. This investigation showed no significant difference in the grinding power requirement, or the metallurgy of the product, with changes in volume. However, if an autogenous mill level is too high, centrifuging will begin. This was observed to begin around the 40% level while operating at 76% of critical speed. P. M. & Co. commercial installations are designed to draw full power at 30% mill volume. The commercial autogenous mills are controlled by setting power draw and automatically regulating feed rate to maintain this set point. Therefore, it is impossible for the mills to centrifuge, or shutdown because of motor overload.

The effect of percent solids in the autogenous mill was tested. With a trunnion discharge mill, varying the % solids showed no change in either mill throughput or power requirement. A peripheral discharge mill produced a coarser grind with a corresponding increase in throughput at lower % solids. This is probably caused by faster transport through the mill giving a product sized closer to the mill discharge screen opening. The choice of mill solids must be made for metallurgical and economic reasons and the optimum would vary with ore type and desired grind.

The effect of a ball charge, equal to 2% of the autogenous mill volume, was a coarser grind in open circuit. This transfers some of the grinding from the lower operating cost autogenous mills to the higher cost ball mills, which is usually not economical. The use of balls in the primary mill is also more expensive because of increased liner wear and the cost of the steel media itself.

The single most important element in pilot plant testing is the accurate determination of the power. The power readings are a combination of grinding power and electrical-mechanical inefficiencies. To obtain the net grinding power, a dynamometer, or Prony brake test, was conducted on the pilot autogenous mill both empty and filled with crushed gravel. The brake was attached to the feed end of the mill and by varying the pressure to the drum, the mill motor could be varied from no load to maximum draw. The reason for completely filling the mill with crushed rock was to duplicate the weight of the grinding charge, including water, at 30% mill volume without adding torque. Therefore, the mechanical and electrical inefficiencies are the same as when the mill is grinding ore. With this method, net grinding power is determined. The horsepower requirement of a commercial size mill is calculated by adding the inefficiencies of its power train to this net figure.

The economic advantages of the primary autogenous mill over the conventional rod mill are due to the following factors: (1) autogenous mill feed requires less crushing; therefore, the capital and operating costs of the ore preparation are lower; (2) the autogenous mill uses no steel grinding media so liner wear costs are less; (3) large autogenous mills are available, which means fewer units are required and grinding mill maintenance expense is reduced.

The metallurgical advantages of autogenous milling are: (1) liberation at a coarser grind due to less cross grain breakage. This produces equivalent concentrate grade at a coarser size. Also the product is easier to dewater and pelletlze. (2) A primary autogenous mill can be designed and controlled to produce grinds over a wide range while still maintaining high efficiency. This is not practical in a rod mill.

ball mill for sale | grinding machine - jxsc mining

Ball mill is the key equipment for grinding materials. those grinding mills are widely used in the mining process, and it has a wide range of usage in grinding mineral or material into fine powder, such as gold, ironzinc ore, copper, etc.

JXSC Mining produce reliable effective ball mill for long life and minimum maintenance, incorporate many of the qualities which have made us being professional in the mineral processing industry since 1985. Various types of ball mill designs are available to suit different applications. These could include but not be restricted to coal mining grate discharge, dry type grinding, wet mineral grinding, high-temperature milling operations, stone & pebble milling.

A ball mill grinds ores to an end product size of thirty-five mesh or finer. The feeding material to a ball mill is treated by: Single or multistage crushing and screening Crushing, screening, and/or rod milling Primary crushing and autogenous/semi-autogenous grinding.

Normal feed sizes: eighty percent of six millimeters or finer for hard rocker eighty percent of twenty-five millimeters or finer for fragile rocks (Larger feed sizes can be tolerated depending on the requirements).

The ratio of machine length to the cylinder diameter of cylindrical type ball mills range from one to three through three to one. When the length to diameter ratio is two to one or even bigger, we should better choose the mill of a Tube Mill.

Grinding circuit design Grinding circuit design is available, we experienced engineers expect the chance to help you with ore material grinding mill plant of grinding circuit design, installation, operation, and optimization. The automatic operation has the advantage of saving energy consumption, grinding media, and reducing body liner wear while increasing grinding capacity. In addition, by using a software system to control the ore grinding process meet the requirements of different ore milling task.

The ball mill is a typical material grinder machine which widely used in the mineral processing plant, ball mill performs well in different material conditions either wet type grinding or dry type, and to grind the ores to a fine size.

Main ball mill components: cylinder, motor drive, grinding medium, shaft. The cylinder cavity is partial filling with the material to be ground and the metal grinding balls. When the large cylinder rotating and creating centrifugal force, the inner metal grinding mediums will be lifted to the predetermined height and then fall, the rock material will be ground under the gravity force and squeeze force of moving mediums. Feed material to be ground enters the cylinder through a hopper feeder on one end and after being crushed by the grinding medium is discharged at the other end.

Mining Equipment Manufacturers, Our Main Products: Gold Trommel, Gold Wash Plant, Dense Media Separation System, CIP, CIL, Ball Mill, Trommel Scrubber, Shaker Table, Jig Concentrator, Spiral Separator, Slurry Pump, Trommel Screen.

small ball mills for sale

Our small-scale miners Ball Mills use horizontal rotating cylinders that contain the grinding media and the particles to be broken. The mass moves up the wall of the cylinder as it rotates and falls back into the toe of the mill when the force of gravity exceeds friction and centrifugal forces. Particles are broken in the toe of the mill when caught in the collisions between the grinding media themselves and the grinding media and the mill wall. In ball mills, the grinding media and particles acquire potential energy that becomes kinetic energy as the mass falls from the rotating shell. Ball mills are customarily divided into categories that are mainly defined by the size of the feed particles and the type of grinding media.

Intermediate and fine size reduction by grinding is frequently achieved in a ball mill in which the length of the cylindrical shell is usually 1 to 1.5 times the shell diameter. Ball mills of greater length are termed tube mills, and when hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. In general, ball mills can be operated either wet or dry and are capable of producing products on the order of 100 um. This duty represents reduction ratios as great as 100.

The ball mill, an intermediate and fine-grinding device, is a tumbling drum with a 40% to 50% filling of balls. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture. Very large tonnages can be ground with these devices because they are very effective material handling devices. The feed can be dry, with less than 3% moisture to minimize ball coating, or a slurry can be used containing 20% to 40% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, autogenous mills, or semi-autogenous mills. Regrind mills in mineral processing operations are usually ball mills, because the feed for these applications is typically quite fine. Ball mills are sometimes used in single-stage grinding, receiving crusher product. The circuits of these mills are often closed with classifiers at high-circulating loads.

All ball mills operate on the same principles. One of these principles is that the total weight of the charge in the mill-the sum of the weight of the grinding media, the weight of the material to be ground, and any water in the millis a function of the percentage of the volume of the mill it occupies.

The power the mill draws is a function of the weight of the charge in the mill, the %of volumetric loading of the mill, the %of critical speed, which is the speed in RPM at which the outer layer of the charge in the mill will centrifuge.

For closed grinding circuits producing typical ball mill products, indirect and direct on-line measurements of the product size are available. The indirect means are those which assume that the product size is relatively constant when the feed condition to the classifying unit and the operating conditions in the classifying unit are constant. One example is maintaining a constant mass flow, pulp density and pressure in the feed to the cyclone classifier.

By using math modeling, it is possible to calculate the product size from measured cyclone classifier feed conditions and circuit operating data, thus establishing the effect on the particle size distribution in the product for changes in the variables.

Direct on-line means to measure either particle size or surface area are available for typical ball mill circuit products. These require the means to obtain representative or at least consistent samples from the grinding circuit product stream. These direct means and the calculated product particle size distributions can be used to:

Small variations in the feed size to ball mill circuits generally is not critical to the calculation of operating work index because they make a very small change in the 10F factor. Thus, a computer program can be developed to calculate operating work indices from on-line data with the feed size a constant and with the program designed to permit manually changing this value, as required to take into account changes in feed size resulting from such things as drawing down feed bins, crusher maintenance, work screen surfaces in the crushing plant, etc. which are generally known in advance, or can be established quickly. Developments underway for on-line measurement of particle size in coarser material which when completed will permit measuring the feed size used to calculate operating work indices.

recorded by a data logger, gives continuous means to report comminution circuit performance and evaluate in-plant testing. Changes in Wio indicated on data loggers alert operating and supervisory personnel that a change has occurred in either the ore or in circuit performance. If sufficient instrumentation is available, the cause for a problem can often be located from other recorded or logged data covering circuit and equipment operation, however, generally the problem calls for operator attention to be corrected.

Wio can be used to determine the efficiency of power utilization for the entire comminution section of a mill, and for the individual circuits making up the comminution section. The efficiency of a comminution circuit is determined by the following equation.

Wi is obtained by running the appropriate laboratory tests on a composite sample of circuit feed. Wio is calculated from plant operating data covering the period when the feed sample was taken. Since Wi from laboratory tests refers to specific conditions for accurate efficiency determinations, it is necessary to apply correction factors as discussed in The Tools of Power Power to Wio to put the laboratory and operating data on the same basis.

To-date, there is no known way to obtain standard work index data from on-line tests. Continuous measurement of comminution circuit efficiency is not possible and thus efficiency is not available for circuit control. Using laboratory data and operating data, efficiency can be determined for overall section and individual circuit for evaluation and reporting. Just monitoring Wio and correcting operating problems as they occur will improve the utilization of the power delivered to the comminution circuits.

Samples taken from the chips around blast hole drillings and from broken ore in the pit or mine for laboratory work index and other ore characteristic determinations before the ore is delivered to the mill, can be used to predict in advance comminution circuit performance. Test results can also be used for ore blending to obtain a more uniform feed, particularly to primary autogenous and semi-autogenous circuits.

We sell Small Ball Mills from 2 to 6 (600 mm X 1800 mm) in diameter and as long as 10 (3000 mm) in length. The mills are manufactured using a flanged mild steel shell, cast heads, overflow discharge, removable man door, spur type ring gear, pinion gear assembly with spherical roller bearings, replaceable roller bronze trunnion bearings, oil lubrication, replaceable trunnion liners with internal spirals, rubber liners and lifters, feed spout with wash port, discharge trommel with internal spiral, motor and gear reducer drive, direct coupled to pinion gear, gear guard and modular steel support frame. All ball mills always come withOSHA-type gear guard.

A PULP level sufficiently high to interpose a bed of pulp, partly to cushion the impact of the balls, permits a maximum crushing effect with a minimum wear of steel. The pulp level of theseSmall Ball Millscan be varied from discharging at the periphery to discharging at a point about halfway between the trunnion and the periphery.The mill shell is of welded plate steel with integral end flanges turned for perfect alignment, and the heads are semi-steel, with hand holes in the discharge end through which the diaphragm regulation is arranged with plugs.The trunnion bearings are babbitted, spherical, cast iron, and of ample size to insure low bearing pressure; while the shell and saddle are machined to gauge so that the shells are interchangeable.

Data based on:Wet grinding, single stage, closed circuit operation: feed:( one way dimension); Class III ore. All mills:free discharge, grated type, rapid pulp flow. N. B.for overflow type mills: capacity 80%power 83%. Dimensions :diameters inside shell without linerslengths working length shell between end liners.

The CIW is a Small Ball Mill thats belt driven, rigid bearing, wet grinding, trunnion or grate discharge type mill with friction clutch pulley and welded steel shell. The 7 and 8 foot diameter mills are of flange ring construction with cut gears while all other sizes have cast tooth gears. All these mills are standard with white iron bar wave type shell liners except the 8 foot diameter mill which is equipped with manganese steel liners. The horsepowers shown in the table are under running conditions so that high torque or wound rotor (slip ring) motors must be used. Manganese or alloy steel shell or head liners and grates can be supplied with all sizes of mills if required. Alloy steel shell liners are recommended where 4 or larger balls are used and particularly for the larger sized mills.

Small (Muleback Type) Ball Mill is built for muleback transportation in 30 and 3 diameters (inside liners). A 4 (Muleback Type) Ball Mill is of special design and will be carefully considered upon request. Mankinds search for valuable minerals often leads him far away from modern transportation facilities. The potential sources of gold, silver and strategic minerals are often found by the prospector, not close by our modern highways, but far back in the mountains and deserts all over the world. The Equipment Company has realized this fact, and therefore has designed a Ball Mill that can be transported to these faraway and relatively inaccessible properties, either by the age old muleback transportation system, or by the modern airplane. As a result these properties may now obtain a well-designed ball mill with the heaviest individual piece weighing only 350 pounds.

The prime factor considered in this design was to furnish equipment having a maximum strength with a minimum weight. For this reason, these mills are made of steel, giving a high tensile strength and light weight to the mills. The muleback design consists of the sturdy cast iron head construction on the 30 size and cast steel head construction on the larger sizes. The flanges on the heads are arranged to bolt to the rolled steel shell provided with flanged rings. When required, the total length of the shell may consist of several shell lengths flanged together to provide the desired mill length. Liners, bearings, gears and drives are similar to those standard on all Ball Mills.

This (Convertible) and Small Ball Mill is unique in design and is particularly adapted to small milling plants. The shell is cast in one piece with a flange for bolting to the head. In converting the mill from a 30x 18 to a 30x 36 unit with double the capacity, it is only necessary to secure a second cast shell (a duplicate of the first) and bolt it to the original section.

30 Convertible Ball Mills are furnished with scoop feeders with replaceable lips. Standard mills are furnished with liners to avoid replacement of the shell; however, themill can be obtained less liners. This ball mill is oftendriven by belts placed around the center, although gear drive units with cast gears can be furnished. A Spiral Screen can be attached to the discharge.

This mill may be used for batch or intermittent grinding, or mixing of dry or wet materials in the ore dressing industry, metallurgical, chemical, ceramic, or paint industries. The material is ground and mixed in one operation by rotating it together with balls, or pebbles in a hermetically sealed cylinder.

The cast iron shell which is bolted to the heads is made with an extra thick wall to give long wearing life. Two grate cleanout doors are provided on opposite sides of the shell by means of which the mill can be either gradually discharged and washed, while running, or easily and rapidly emptied and flushedout while shut down. Wash-water is introduced into the interior of the mill through a tapped opening in the trunnion. The mill may be lined with rubber, silex (buhrstone) or wood if desired.

The Hardinge Conical Ball Mill has been widely used with outstanding success in grinding many materials in a wide variety of fields. The conical mill operates on the principle of an ordinary ball mill with a certain amount of classification within the mill itself, due to its shape.

Sizes of conical mills are given in diameter of the cylindrical section in feet and the length of the cylindrical section in inches. Liners can be had of hard iron, manganese steel or Belgian Silex. Forged steel balls or Danish Flint Pebbles are used for the grinding media, depending upon the material being milled.

The Steel Head Ball-Rod Mill gives the ore dressing engineer a wide choice in grinding design so that he can easily secure a Ball-Rod Mill suited to his particular problem. The successful operation of any grinding unit is largely dependent on the method of removing the ground pulp. The Ball-Rod Mill is available with five types of discharge trunnions, each type obtainable in small, medium or large diameters. The types of discharge trunnions are:

The superiority of the Steel Head Ball-Rod Mill is due to the all steel construction. The trunnions are an integral part of the cast steel heads and are machined with the axis of the mill. The mill heads are assured against breakage due to the high tensile strength of cast steel as compared to that of the cast iron head found on the ordinary ball mill. Trunnion Bearings are made of high- grade nickel babbitt.

Steel Head Ball-Rod Mills can be converted intolarger capacity mills by bolting an additional shell lengthonto the flange of the original shell. This is possible because all Steel Head Ball or Rod Mills have bearings suitable for mills with length twice the diameter.

Head and shell liners for Steel Head Ball-Rod Mills are available in Decolloy (a chrome-nickel alloy), hard iron, electric steel, molychrome steel, and manganese steel. Drive gears are furnished either in cast tooth spur gear and pinion or cut tooth spur gear and pinion. The gears are furnished as standard on the discharge end of the mill, out of the way of the classifier return feed, but can be furnished at the mill feed end by request. Drives may be obtained according to the customers specifications.

Thats one characteristic of Traylor Ball Millsliked by ownersthey are built not only to do a first class job at low cost but to keep on doing it, year after year. Of course, that means we do not build as many mills as if they wore out quicklyor would we? but much as welike order, we value more the fine reputationTraylor Ball Mills have had for nearly threedecades.

Thats one characteristic of Traylor Ball Mills We dont aim to write specifications into thisliked by ownersthey are built not only to do advertisementlet it suffice to say that theresa first class job at low cost but to keep on do- a Traylor Ball Mills that will exactly fit anyanything it, year after year. Of course, that means requirement that anyone may have.

If this is true, there is significance in the factthat international Nicked and Climax Molybdenum, theworlds largest producers of two important steel alloys, areboth users of MARCY Mills exclusively. With international interest centered on increasingproduction of gold, it is even more significant that MARCYMills are the predominant choice of operators in everyimportants gold mining camp in the world.

Ball Mill. Intermediate and fine size reduction by grinding is frequently achieved in a ball mill in which the length of the cylindrical shell is usually 1 to 1.5 times the shell diameter. Ball mills of greater length are termed tube mills, and when hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. In general, ball mills can be operated either wet or dry and are capable of producing products on the order of 100 pm. This duty represents reduction ratios as great as 100.

The ball mill, an intermediate and fine-grinding device, is a tumbling drum with a 40% to 50% filling of balls (usually steel or steel alloys). The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture. Very large tonnages can be ground with these devices because they are very effective material handling devices. The feed can be dry, with less than 3% moisture to minimize ball coating, or a slurry can be used containing 20% to 40% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, autogenous mills, or semiautogenous mills. Regrind mills in mineral processing operations are usually ball mills, because the feed for these applications is typically quite fine. Ball mills are sometimes used in single-stage grinding, receiving crusher product. The circuits of these mills are often closed with classifiers at high-circulating loads.

These loads maximize throughput at a desired product size. The characteristics of ball mills are summarized in the Table, which lists typical feed and product sizes. The size of the mill required to achieve a given task-that is, the diameter (D) inside the liners-can be calculated from the design relationships given. The design parameters must be specified.

The liner- and ball-wear equations are typically written in terms of an abrasion index (Bond 1963). The calculated liner and ball wear is expressed in kilograms per kilowatt-hour (kg/kWh), and when multiplied by the specific power (kWh/t), the wear rates are given in kilograms per ton of feed. The wear in dry ball mills is approximately one-tenth of that in wet ball mills because of the inhibition of corrosion. The efficiency of ball mills as measured relative to single-particle slow-compression loading is about 5%. Abrasion indices for five materials are also listed in the Table.

The L/D ratios of ball mills range from slightly less than 1:1 to something greater than 2:1. The tube and compartment ball mills commonly used in the cement industry have L/D ratios 2.75:1 or more. The fraction of critical speed that the mill turns depends on the application, and most mills operate at around 75% of critical speed. Increased speed generally means increased power, but as the simulations presented in Figure 3.26 show, it can also produce more wasted ball impacts on the liners above the toe. causing more wear and less breakage.

There are three principal forms of discharge mechanism. In the overflow ball mill, the ground product overflows through the discharge end trunnion. A diaphragm ball mill has a grate at thedischarge end. The product flows through the slots in the grate. Pulp lifters may be used to discharge the product through the trunnion, or peripheral ports may be used to discharge the product.

The majority of grinding balls are forged carbon or alloy steels. Generally, they are spherical, but other shapes have been used. The choice of the top (or recharge) ball size can be made using empirical equations developed by Bond or Azzaroni or by using special batch-grinding tests interpreted in the content of population balance models. The effect of changes in ball size on specific selection functions has been found to be different for different materials. A ball size-correction method can be used along with the specific selection function scale-up method to determine the best ball size. To do this, a set of ball size tests are performed in a batch mill from which the specific selection function dependence on ball size can be determined. Then, the mill capacities used to produce desired product size can be predicted by simulation using the kinetic parameter corresponding to the different ball sizes.

The mill liners used are constructed from cast alloy steels, wear-resistant cast irons, or polymer (rubber) and polymer metal combinations. The mill liner shapes often recommended in new mills are double-wave liners when balls less than 2.5 in. are used and single-wave liners when larger balls are used. Replaceable metal lifter bars are sometimes used. End liners are usually ribbed or employ replaceable lifters.

The typical mill-motor coupling is a pinion and gear. On larger mills two motors may be used, and in that arrangement two pinions drive one gear on the mill. Synchronous motors are well suited to the ball mill, because the power draw is almost constant. Induction, squirrel cage, and slip ring motors are also used. A high-speed motor running 600 to 1,000 rpm requires a speed reducer between the motor and pinion shaft. The gearless drive has been installed at a number of locations around the world.

what's the difference between sag mill and ball mill - jxsc machine

A mill is a grinder used to grind and blend solid or hard materials into smaller pieces by means of shear, impact and compression methods. Grinding mill machine is an essential part of many industrial processes, there are mainly five types of mills to cover more than 90% materials size-reduction applications.

Do you the difference between the ball mill, rod mills, SAG mill, tube mill, pebble mill? In the previous article, I made a comparison of ball mill and rod mill. Today, we will learn about the difference between SAG mill vs ball mill.

AG/SAG is short for autogenous mill and semi-autogenous mill, it combines with two functions of crushing and grinding, uses the ground material itself as the grinding media, through the mutual impact and grinding action to gradually reduce the material size. SAG mill is usually used to grind large pieces into small pieces, especially for the pre-processing of grinding circuits, thus also known as primary stage grinding machine. Based on the high throughput and coarse grind, AG mills produce coarse grinds often classify mill discharge with screens and trommel. SAG mills grinding media includes some large and hard rocks, filled rate of 9% 20%. SAG mill grind ores through impact, attrition, abrasion forces. In practice, for a given ore and equal processing conditions, the AG milling has a finer grind than SAG mills.

The working principle of the self-grinding machine is basically the same as the ball mill, the biggest difference is that the sag grinding machine uses the crushed material inside the cylinder as the grinding medium, the material constantly impacts and grinding to gradually pulverize. Sometimes, in order to improve the processing capacity of the mill, a small amount of steel balls be added appropriately, usually occupying 2-3% of the volume of the mill (that is semi-autogenous grinding).

High capacity Ability to grind multiple types of ore in various circuit configurations, reduces the complexity of maintenance and coordination. Compared with the traditional tumbling mill, the autogenous mill reduces the consumption of lining plates and grinding media, thus have a lower operation cost. The self-grinding machine can grind the material to 0.074mm in one time, and its content accounts for 20% ~ 50% of the total amount of the product. Grinding ratio can reach 4000 ~ 5000, more than ten times higher than ball, rod mill.

Ball mills are fine grinders, have horizontal ball mill and vertical ball mill, their cylinders are partially filled with steel balls, manganese balls, or ceramic balls. The material is ground to the required fineness by rotating the cylinder causing friction and impact. The internal machinery of the ball mill grinds the material into powder and continues to rotate if extremely high precision and precision is required.

The ball mill can be applied in the cement production plants, mineral processing plants and where the fine grinding of raw material is required. From the volume, the ball mill divide into industrial ball mill and laboratory use the small ball mill, sample grinding test. In addition, these mills also play an important role in cold welding, alloy production, and thermal power plant power production.

The biggest characteristic of the sag mill is that the crushing ratio is large. The particle size of the materials to be ground is 300 ~ 400mm, sometimes even larger, and the minimum particle size of the materials to be discharged can reach 0.1 mm. The calculation shows that the crushing ratio can reach 3000 ~ 4000, while the ball mills crushing ratio is smaller. The feed size is usually between 20-30mm and the product size is 0-3mm.

Both the autogenous grinding mill and the ball mill feed parts are welded with groove and embedded inner wear-resistant lining plate. As the sag mill does not contain grinding medium, the abrasion and impact on the equipment are relatively small.

The feed of the ball mill contains grinding balls. In order to effectively reduce the direct impact of materials on the ball mill feed bushing and improve the service life of the ball mill feed bushing, the feeding point of the groove in the feeding part of the ball mill must be as close to the side of the mill barrel as possible. And because the ball mill feed grain size is larger, ball mill feeding groove must have a larger slope and height, so that feed smooth.

Since the power of the autogenous tumbling mill is relatively small, it is appropriate to choose dynamic and static pressure bearing. The ball bearing liner is made of lead-based bearing alloy, and the back of the bearing is formed with a waist drum to form a contact centering structure, with the advantages of flexible movement. The bearing housing is lubricated by high pressure during start-up and stop-up, and the oil film is formed by static pressure. The journal is lifted up to prevent dry friction on the sliding surface, and the starting energy moment is reduced. The bearing lining is provided with a snake-shaped cooling water pipe, which can supply cooling water when necessary to reduce the temperature of the bearing bush. The cooling water pipe is made of red copper which has certain corrosion resistance.

Ball mill power is relatively large, the appropriate choice of hydrostatic sliding bearing. The main bearing bush is lined with babbitt alloy bush, each bush has two high-pressure oil chambers, high-pressure oil has been supplied to the oil chamber before and during the operation of the mill, the high-pressure oil enters the oil chamber through the shunting motor, and the static pressure oil film is compensated automatically to ensure the same oil film thickness To provide a continuous static pressure oil film for mill operation, to ensure that the journal and the bearing Bush are completely out of contact, thus greatly reducing the mill start-up load, and can reduce the impact on the mill transmission part, but also can avoid the abrasion of the bearing Bush, the service life of the bearing Bush is prolonged. The pressure indication of the high pressure oil circuit can be used to reflect the load of the mill indirectly. When the mill stops running, the high pressure oil will float the Journal, and the Journal will stop gradually in the bush, so that the Bush will not be abraded. Each main bearing is equipped with two temperature probe, dynamic monitoring of the bearing Bush temperature, when the temperature is greater than the specified temperature value, it can automatically alarm and stop grinding. In order to compensate for the change of the mill length due to temperature, there is a gap between the hollow journal at the feeding end and the bearing Bush width, which allows the journal to move axially on the bearing Bush. The two ends of the main bearing are sealed in an annular way and filled with grease through the lubricating oil pipe to prevent the leakage of the lubricating oil and the entry of dust.

The end cover of the autogenous mill is made of steel plate and welded into one body; the structure is simple, but the rigidity and strength are low; the liner of the autogenous mill is made of high manganese steel.

The end cover and the hollow shaft can be made into an integral or split type according to the actual situation of the project. No matter the integral or split type structure, the end cover and the hollow shaft are all made of Casting After rough machining, the key parts are detected by ultrasonic, and after finishing, the surface is detected by magnetic particle. The surface of the hollow shaft journal is Polished after machining. The end cover and the cylinder body are all connected by high-strength bolts. Strict process measures to control the machining accuracy of the joint surface stop, to ensure reliable connection and the concentricity of the two end journal after final assembly. According to the actual situation of the project, the cylinder can be made as a whole or divided, with a flanged connection and stop positioning. All welds are penetration welds, and all welds are inspected by ultrasonic nondestructive testing After welding, the whole Shell is returned to the furnace for tempering stress relief treatment, and after heat treatment, the shell surface is shot-peened. The lining plate of the ball mill is usually made of alloy material.

The transmission part comprises a gear and a gear, a gear housing, a gear housing and an accessory thereof. The big gear of the transmission part of the self-grinding machine fits on the hollow shaft of the discharge material, which is smaller in size, but the seal of the gear cover is not good, and the ore slurry easily enters the hollow shaft of the discharge material, causing the hollow shaft to wear.

The big gear of the ball mill fits on the mill shell, the size is bigger, the big gear is divided into half structure, the radial and axial run-out of the big gear are controlled within the national standard, the aging treatment is up to the standard, and the stress and deformation after processing are prevented. The big gear seal adopts the radial seal and the reinforced big gear shield. It is welded and manufactured in the workshop. The geometric size is controlled, the deformation is prevented and the sealing effect is ensured. The small gear transmission device adopts the cast iron base, the bearing base and the bearing cap are processed at the same time to reduce the vibration in operation. Large and small gear lubrication: The use of spray lubrication device timing quantitative forced spray lubrication, automatic control, no manual operation. The gear cover is welded by profile steel and high-quality steel plate. In order to enhance the stiffness of the gear cover, the finite element analysis is carried out, and the supporting structure is added in the weak part according to the analysis results.

The self-mill adopts the self-return device to realize the discharge of the mill. The self-returning device is located in the revolving part of the mill, and the material forms a self-circulation in the revolving part of the mill through the self-returning device, discharging the qualified material from the mill, leading the unqualified material back into the revolving part to participate in the grinding operation.

The ball mill adopts a discharge screen similar to the ball mill, and the function of blocking the internal medium of the overflow ball mill is accomplished inside the rotary part of the ball mill. The discharge screen is only responsible for forcing out a small amount of the medium that overflows into the discharge screen through the internal welding reverse spiral, to achieve forced discharge mill.

The slow drive consists of a brake motor, a coupling, a planetary reducer and a claw-type clutch. The device is connected to a pinion shaft and is used for mill maintenance and replacement of liners. In addition, after the mill is shut down for a long time, the slow-speed transmission device before starting the main motor can eliminate the eccentric load of the steel ball, loosen the consolidation of the steel ball and materials, ensure safe start, avoid overloading of the air clutch, and play a protective role. The slow-speed transmission device can realize the point-to-point reverse in the electronic control design. When connecting the main motor drive, the claw-type Clutch automatically disengages, the maintenance personnel should pay attention to the safety.

The slow drive device of the ball mill is provided with a rack and pinion structure, and the operating handle is moved to the side away from the cylinder body The utility model not only reduces the labor intensity but also ensures the safety of the operators.

equipment | classifieds | icmj prospecting & mining journal

New and used gold mining equipment, including shaker tables, washplants, mills, crushers, motors, dredges, drills, concentrators, drywashers, flotation cells, pumps, jigs, furnaces, ore bins, conveyors, detectors, screens, sluices, highbankers, trommels, gold pans, augers, hoppers, cranes, amalgamators, and more

BRAND NEW HARD ROCK MINING equipment available for immediate order, from Mt. Baker Mining and Metals. We are a USA manufacturer located in Bellingham, WA. Call us today at (360)595-4445 for more information.

3x6 Ball Mill (1TPH), complete with drive, 20hp motor, balls, frame -- $37,000 1 Ton/hr Turn-key Ore Processor, ready-to-run -- $99,500 6x10 Jaw Crusher (1-3TPH), 7.5hp 3-phase -- $8,600 10x16 Jaw Crusher (5-20TPH), 20hp 3-phase -- $16,700 Mini Mobile Gold Processor 1 Ton/hr, Honda 22hp gas -- $16,000 16x12 Hammer Mill (1TPH), 15hp, 3-phase -- $12,325 24x16 Hammer Mill (2TPH), 30hp, 3-phase -- $22,900 4x8 Shaker Table (1TPH), single phase -- $14,900

2x4 w/ 1/2 ton extra balls. In barely used condition Used briefly for gold mine research & design at the shop only, never seen production work at the mine Portable, trailer-mounted. Comes with: 15x30 long stacking conveyor 6x10 Hopper & stand frame mounted Stationary single-deck grizzly screen Lots of pictures. All the info about everything from specs to production to what uses from an expert engineer, call for details, inspection, close up pictures, shipping etc.

B-70 and B-701 Mc Englevan (MIFCO) metal melting pot furnaces with high pressure blowers. -- $9,500, each Exhaust and pouring system for B-70 MIFCO furnace consists of a 5X9 hood and 20-foot-tall chimney with 1hp fan, trolly with cantilever crucible extractor, crucible tongs and pouring table. -- $10,000 Bullion molds for silver, 50 to 500 ounce plus conical mold to separate metal and slag. -- $5,000 Chemical fume hood on stand, 4-foot-wide, with 3/16 thick safety glass front sash and exhaust fan. Excellent conditionno rust, Alberine stone working surface. We have 2. -- $2,500 each Chemical Scrubber for hood, 1,000 CFM with 50-gallon sump, circulating pump and exhaust fan. -- $2,000 Thum cell electrolytic silver refining system: 500+ ounce per day with power supply and cables. Shown in October 2018 ICMJ. Comes with electrolyte silver dissolver, crystal cleaning station, silver crystal drying oven. We have enough spare parts to make 3 cells. -- $25,000 each Olympus binocular stereo microscope Model SF-20, 30X magnification with fluorescent ring light. -- $195. OMYNO binocular boom microscope on 11-inch pole, 10-65x magnification with wide field eyepieces. Excellent for looking at large specimens. -- $395 Fiber optic illuminator for microscope -- $125 Micro sample splitter with pans, excellent for splitting gold placer. 2 each in stock. -- $95 each Laboratory Scale, Mettler AE160, capacity 75 grams, accuracy, 1/10 mg, reads 4 places to right of decimal. Professionally calibrated in May 2021. -- $1,500 Chain-o-matic Ainsworth double pan balance with set of weights. -- $1,200 12x12x12 lab drying oven. -- $500 Sweco, 4- foot diameter 3-deck sieve with 6 spare sieve. -- s$9,500 Lightnin mixers, air operated with 4 shafts and 3diameter props. -- $1,000 each

EQUIPMENT IN GOOD WORKING condition: Knelson MD30 Concentrator$18,000. 24 ga Gardner Denver mucker$6,000. (2) 24 ga 1-1/2 ton rocker dump and 1 end dump mine cars$2,000 ea. Stutenroth impact mill w/50 HP motor$6,000. GD 63 Jackleg drill$1,500. (970)560-0685 or send email.

25mm OD core drill comes with backpack, Shaw gas-powered engine drill, coupling, diamond drill bit, loose materials bit, core cutter, 2 compression tanks, core breaker, knockout rod, barrel adapter, T-handle, aluminum gas can and 20 feet of drill steel. Excellent condition. Asking $2,800, includes delivery in the USA. UNION GULF RESOURCES, CORP. Send email or call (619)609-0234.

FOR SALE15 TON GIBSON ROD MILL, w/roll. Mint. Jaw, conveyor, feeder, classifier (2) table. Send $8. 14 pages, pictures, W.W. Gibson instructions. OREGON MINE SERVICE, PO Box 205, Sumpter, OR 97877. $15,000 Firm.

ORO INDUSTRIES TROMMEL and Centrifuge. Trommel is 24 diameter by 20 long, 10HP electric drive with Browning gearbox. 25 - 30 YPH. Centrifuge is 20 diameter with 3HP electric motor with 15 YPH production rate. Call (307)922-4754, MATT.

DENVER 5x4 SRL PUMP, 25 HP; Galigher 2 rubber-lined sump pump; 48 Sweco screen; Denver #12 drives/ 48 Dorr Oliver thickener mechanism; (2) 100 amp SS shut off boxes. MILLER EQUIPMENT, Tel: (865)475-7977, or send email.

Powered by JCB200 Excavator with 400 Link Belt Undercarriage. 100YPH Gold Watch Project washplant. 5 cylinder Duetz water pump. 24x8 container included with extra parts & supplies. Setup to work on land or ocean. Located in Nome, AK. Ready to work. Pictures available. $139,000 $79,000. Call ARNE BELSBY, send email or call(509)979-8265.

WANTED: WET DRUM MAGNETIC SEPARATORS in operating condition with feed tanksCASH BUYER FOR SALE: Deister 999 triple table in 40 trailer with sand screw & controls, very good condition for sale. LARRY (602)377-3774 Call or send email.

FOR SALE: 4x3 Denver SRL pump, 7.5 HP; 5x4 Denver SRL pump, 25 HP; 2 Galigher rubber-lined pump 5HP; 48 Sweco SD screen, Denver #12 drives, 48 Dorr Oliver thickener mechanism; (2) 100 amp SS shut off boxes. MILLER EQUIPMENT, Tel: (865)475-7977or send email.

EQUIP. SETUP FOR REMOTE MINE-MOUTH, NO POWER, OPS. Complete Assembly consisting of: M35A2 multi-fuel Army truck w/ mounted 10x16 rebuilt Austin-Western crusher (driven by new 50 HP Kohler gas motor). Crusher discharges to new vibratory overs/unders classifier. Unders supplies used Kamflex elevator discharging to new Stutenroth 2 tph impact mill w/ new 18 hp clutched Honda gas motor. Mill discharges to new vibratory variable speed classifier. All equip. has approx. 12 hrs. use. $34,000 OBO. If not sold by 10/31/21, equipment will be parted out & sold separately. (208)521-3649, leave a message or send email.

COMPLETE PLACER PLANT OPERATION in Arizona. Buy Any or All. Very Low Hours: Rock Systems feeder/hopper/grizzly/conveyer$30,000. Goldlands 50 YPH trommel$35,000. 6 Pump$5,000. Yukon Sluice$3,000. Goldlands sizing separator$9,000. MSI Water Clarification Unit$175,000. MSI Exit Conveyor $7,000. U-Tech Finishing Table$1,900. 4 Honda Pumps$4,000 ea. Power Panel$10,000. 75KW Generator$22,000. Cargo Trailer with tools etc.$8,000. Goldlands Spiral Separator$2,500. Much more: tools, generators, water tank, diesel tank, welding etc. Send email.

NOME 10-inch suction dredge Dola Mae 50-foot catamaran, (2) new 115 HP Yamaha 4-stroke engs. 5.9 Cummins diesel, 6X8 Berkeley water pump, new 6212 Garmin GPS. 16-wheel trailer. Sleeping quarters. $155K Send email or call WES (928)710-8404.