The basic parameters used in ball mill design (power calculations), rod mill or anytumbling millsizing are; material to be ground, characteristics, Bond Work Index, bulk density, specific density, desired mill tonnage capacity DTPH, operating % solids or pulp density, feed size as F80 and maximum chunk size, productsize as P80 and maximum and finally the type of circuit open/closed you are designing for.

In extracting fromNordberg Process Machinery Reference ManualI will also provide 2 Ball Mill Sizing (Design) example done by-hand from tables and charts. Today, much of this mill designing is done by computers, power models and others. These are a good back-to-basics exercises for those wanting to understand what is behind or inside the machines.

W = power consumption expressed in kWh/short to (HPhr/short ton = 1.34 kWh/short ton) Wi = work index, which is a factor relative to the kwh/short ton required to reduce a given material from theoretically infinite size to 80% passing 100 microns P = size in microns of the screen opening which 80% of the product will pass F = size in microns of the screen opening which 80% of the feed will pass

Open circuit grinding to a given surface area requires no more power than closed circuit grinding to the same surface area provided there is no objection to the natural top-size. If top-size must be limited in open circuit, power requirements rise drastically as allowable top-size is reduced and particle size distribution tends toward the finer sizes.

A wet grinding ball mill in closed circuit is to be fed 100 TPH of a material with a work index of 15 and a size distribution of 80% passing inch (6350 microns). The required product size distribution is to be 80% passing 100 mesh (149 microns). In order to determine the power requirement, the steps are as follows:

The ball mill motorpower requirement calculated above as 1400 HP is the power that must be applied at the mill drive in order to grind the tonnage of feed from one size distribution. The following shows how the size or select thematching mill required to draw this power is calculated from known tables the old fashion way.

The value of the angle a varies with the type of discharge, percent of critical speed, and grinding condition. In order to use the preceding equation, it is necessary to have considerable data on existing installations. Therefore, this approach has been simplified as follows:

A = factor for diameter inside shell lining B = factor which includes effect of % loading and mill type C = factor for speed of mill L = length in feet of grinding chamber measured between head liners at shell- to-head junction

Many grinding mill manufacturers specify diameter inside the liners whereas othersare specified per inside shell diameter. (Subtract 6 to obtain diameter inside liners.) Likewise, a similar confusion surrounds the length of a mill. Therefore, when comparing the size of a mill between competitive manufacturers, one should be aware that mill manufacturers do not observe a size convention.

In Example No.1 it was determined that a 1400 HP wet grinding ball mill was required to grind 100 TPH of material with a Bond Work Index of 15 (guess what mineral type it is) from 80% passing inch to 80% passing 100 mesh in closed circuit. What is the size of an overflow discharge ball mill for this application?

JXSC supply ball mill, rod mill has been 35 years. Contact us for a quotation. Hot products: jaw crusher, impact crusher, cone crusher, ball mill, shaker table, centrifugal separator, jig, magnetic separator, flotation, gold trommel, trommel scrubber, gold washing plant, and so on.

The production capacity of the ball mill is determined by the amount of material required to be ground, and it must have a certain margin when designing and selecting. There are many factors affecting the production capacity of the ball mill, in addition to the nature of the material (grain size, hardness, density, temperature and humidity), the degree of grinding (product size), the uniformity of the feeding material, and the portion of loaded, , and the mill structure (the mill barrel length, diameter ratio, the number of bins, the shape of the partition plate and the lining plate). It is difficult to theoretically determine the productivity of the mill. The grinding mills production capacity is generally calculated based on the newly generated powder ore of less than 0.074 mm (-200 mesh). V Effective volume of ball mill, m3; G2 Material less than 0.074mm in product accounts for the percentage of total material, %; G1 Material less than 0.074mm in ore feeding accounts for 0.074mm in the percentage of the total material, %; qm Unit productivity calculated according to the new generation grade (0.074mm), t/(m3.h). The values of qm are determined by experiments or are calibrated in production with similar ore physical properties and the same equipment and working conditions. When there is no test data and production calibration value, it can be calculated by formula (1-3). Di1- Standard mill diameter, m; K4 feed size and product size coefficient of mill. G3 G4 The production capacity of existing or experimental mills with newly designed and parameters (feed size or product size calculated according to the new generation 0.074mm level) is shown in Table 1-6. The values of G1 and G2 above should be calculated according to actual data. If there is no actual data, they can be selected according to tables 1-7 and 1-8.

When the filling rate of grinding medium is less than 35% in dry grinding operation, the power can be calculated by formula (1-7). n - mill speed, r/min; G - Total grinding medium, T; - Mechanical efficiency, when the center drive, = 0.92-0.94; when the edge drive, = 0.86-0.90.

\ Critical Speed_ When the ball mill cylinder is rotated, there is no relative slip between the grinding medium and the cylinder wall, and it just starts to run in a state of rotation with the cylinder of the mill. This instantaneous speed of the mill is as follows: N0 - mill working speed, r/min; Kb speed ratio, %. There are many layers of grinding media in the mill barrel. It is assumed that the media will be concentrated in one layer, called the polycondensation layer, so that the grinding media of this layer will be in the maximum drop, i.e. the calculating speed of the mill when the total impact energy is the largest nj. Therefore, it is theoretically deduced that the reasonable working speed is The working speeds of various mills are shown in Table 1-10. Table 1-10 Working speeds of various mills

In production practice, there are many factors affecting the motion state of grinding media. Therefore, the appropriate working speed should be selected according to the actual situation. In determining the actual working speed of the mill, the influences of the mill specifications, production methods, liner forms, grinding media types, filling rate, physical and chemical properties of the ground materials, particle size of the grinding materials and grinding fineness of the products should be taken into account. The actual working speed of the mill should be determined by scientific experiments, which can reflect the influence of these factors more comprehensively.

Ball loading capacity The volume of the grinding medium is the percentage of the effective volume of the mill, which is called the filling rate of the grinding medium. The size of filling directly affects the number of shocks, the area of grinding and the load of grinding medium in the grinding process. At the same time, it also affects the height of the grinding medium itself, the impact on the material and the power consumption. A kind of The ball loading capacity of the mill can be calculated according to the formula (1-14). Gra Quantity of Grinding Medium, T. Rho s loose density of grinding medium, t/m3. Forged steel balls; P=s=4.5-4.8t/m3 cast steel balls P=4.3-4.6t/m3; rolling steel balls P=6.0-6.8t/m3; steel segments P=4.3-4.6t/m3_-filling ratio of grinding medium, When wet grinding: lattice ball mill pi = 40% 45%; overflow ball mill phi = 40%; rod mill phi = 35%. Dry grinding: When material is mixed between grinding media, the grinding medium expands, and when dry grinding is adopted, the material fluidity is relatively poor, material flow is hindered by abrasive medium, so filling rate is low, and the filling rate is between 28% and 35%. The pipe mill is 25%-35%. The void fraction of grinding medium_k=0.38-0.42 and the quality of crushed material accounts for about 14% of the quality of grinding medium.

Size and Proportion of Grinding Medium In the ball mill, the size and proportion of steel balls have a great influence on the productivity and working efficiency of the mill. For coarse and hard materials, larger steel balls should be selected, for fine and brittle materials, with smaller diameter steel balls, the impact times of steel balls in the mill increase with the decrease of ball diameter, and the grinding between balls increases. The clearance is dense with a decrease of spherical diameter. Therefore, it is better to choose the ball with a larger mass and smaller diameter (loose density) as the grinding medium. The size of the ball mainly depends on the particle size of the material to be ground, and the diameter and speed of the mill can be considered appropriately. Formula (1-15) is an empirical formula for spherical diameter and feed size. dmax The maximum diameter of steel ball, mm; amax the maximum size of feeding granularity, mm. After calculating the maximum steel ball diameter, the steel ball ratio in the mill can be calculated with reference to Fig. 2-1 (suitable for cement mill, other mills can refer to). After choosing the maximum diameter and minimum diameter of steel balls according to technological requirements, material properties, mill specifications and various parameters, and then matching grade, using curves, the accumulative percentage of the mass of each corresponding steel balls loaded into the mill can be found, the actual percentage of the mass can be calculated, and the loading quality of steel balls at all levels can be obtained. According to the production practice of production enterprises, the relationship between ball diameter and material size is shown in Table 1-11. A kind of Steel balls are gradually worn out in the process of grinding materials. The wear of drop steel ball is related to its impact force. The wear of grinding steel balls is related to the surface area of steel balls. In general, the steel ball in the grinder has both impact and abrasion effects, so the wear is proportional to the n power of the diameter of the steel ball, and the value of n is between 2 and 3. Table 1-11 The Relation between Steel Ball Diameter and Material Size

The quality and surface area of forged steel balls of various sizes are shown in Table 1-12. A kind of Because of the wear of steel balls in the mill production process, in order to keep the mill stable. Steel balls need to be added regularly. The maximum diameter of additional steel balls is still determined by the method mentioned above. In addition to the addition of additional steel balls, several smaller diameter steel balls should be added according to production experience.

In Grinding, selecting (calculate)the correct or optimum ball sizethat allows for the best and optimum/ideal or target grind size to be achieved by your ball mill is an important thing for a Mineral Processing Engineer AKA Metallurgist to do. Often, the ball used in ball mills is oversize just in case. Well, this safety factor can cost you much in recovery and/or mill liner wear and tear.

The Ball Mill Finish Calculator can be used when an end mill with a full radius (a ball mill) is used on a contoured surface. The tool radius on each side of the cut will leave stock referred to as a scallop. The finish of the part will be determined by the height of the scallop, amd the scallop will be determined by the stepover distance between cuts.

To calculate the stepover distance, enter the scallop height and click Calc Stepover To calculate the scallop height, enter the stepover distance and click Calc Scallop Tool Dia. In. Angle Deg. Scallop In. Stepover In.

A ball mill is a type of grinder used to grind and blend bulk material into QDs/nanosize using different sized balls. The working principle is simple; impact and attrition size reduction take place as the ball drops from near the top of a rotating hollow cylindrical shell. The nanostructure size can be varied by varying the number and size of balls, the material used for the balls, the material used for the surface of the cylinder, the rotation speed, and the choice of material to be milled. Ball mills are commonly used for crushing and grinding the materials into an extremely fine form. The ball mill contains a hollow cylindrical shell that rotates about its axis. This cylinder is filled with balls that are made of stainless steel or rubber to the material contained in it. Ball mills are classified as attritor, horizontal, planetary, high energy, or shaker.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles, as well as collision energy. These forces are derived from the rotational motion of the balls and movement of particles within the mill and contact zones of colliding balls.

By rotation of the mill body, due to friction between mill wall and balls, the latter rise in the direction of rotation till a helix angle does not exceed the angle of repose, whereupon, the balls roll down. Increasing of rotation rate leads to growth of the centrifugal force and the helix angle increases, correspondingly, till the component of weight strength of balls become larger than the centrifugal force. From this moment the balls are beginning to fall down, describing during falling certain parabolic curves (Figure 2.7). With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls are attached to the wall due to centrifugation:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 6580% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

The degree of filling the mill with balls also influences productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 3035% of its volume.

The mill productivity also depends on many other factors: physical-chemical properties of feed material, filling of the mill by balls and their sizes, armor surface shape, speed of rotation, milling fineness and timely moving off of ground product.

where b.ap is the apparent density of the balls; l is the degree of filling of the mill by balls; n is revolutions per minute; 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption; a mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, i.e. during grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction, and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles as well as collision energy. These forces are derived from the rotational motion of the balls and the movement of particles within the mill and contact zones of colliding balls.

By the rotation of the mill body, due to friction between the mill wall and balls, the latter rise in the direction of rotation until a helix angle does not exceed the angle of repose, whereupon the balls roll down. Increasing the rotation rate leads to the growth of the centrifugal force and the helix angle increases, correspondingly, until the component of the weight strength of balls becomes larger than the centrifugal force. From this moment, the balls are beginning to fall down, describing certain parabolic curves during the fall (Fig. 2.10).

With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls remain attached to the wall with the aid of centrifugal force is:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 65%80% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

where db.max is the maximum size of the feed (mm), is the compression strength (MPa), E is the modulus of elasticity (MPa), b is the density of material of balls (kg/m3), and D is the inner diameter of the mill body (m).

The degree of filling the mill with balls also influences the productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 30%35% of its volume.

The productivity of ball mills depends on the drum diameter and the relation of drum diameter and length. The optimum ratio between length L and diameter D, L:D, is usually accepted in the range 1.561.64. The mill productivity also depends on many other factors, including the physical-chemical properties of the feed material, the filling of the mill by balls and their sizes, the armor surface shape, the speed of rotation, the milling fineness, and the timely moving off of the ground product.

where D is the drum diameter, L is the drum length, b.ap is the apparent density of the balls, is the degree of filling of the mill by balls, n is the revolutions per minute, and 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption. A mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, that is, during the grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

Milling time in tumbler mills is longer to accomplish the same level of blending achieved in the attrition or vibratory mill, but the overall productivity is substantially greater. Tumbler mills usually are used to pulverize or flake metals, using a grinding aid or lubricant to prevent cold welding agglomeration and to minimize oxidation [23].

Cylindrical Ball Mills differ usually in steel drum design (Fig. 2.11), which is lined inside by armor slabs that have dissimilar sizes and form a rough inside surface. Due to such juts, the impact force of falling balls is strengthened. The initial material is fed into the mill by a screw feeder located in a hollow trunnion; the ground product is discharged through the opposite hollow trunnion.

Cylindrical screen ball mills have a drum with spiral curved plates with longitudinal slits between them. The ground product passes into these slits and then through a cylindrical sieve and is discharged via the unloading funnel of the mill body.

Conical Ball Mills differ in mill body construction, which is composed of two cones and a short cylindrical part located between them (Fig. 2.12). Such a ball mill body is expedient because efficiency is appreciably increased. Peripheral velocity along the conical drum scales down in the direction from the cylindrical part to the discharge outlet; the helix angle of balls is decreased and, consequently, so is their kinetic energy. The size of the disintegrated particles also decreases as the discharge outlet is approached and the energy used decreases. In a conical mill, most big balls take up a position in the deeper, cylindrical part of the body; thus, the size of the balls scales down in the direction of the discharge outlet.

For emptying, the conical mill is installed with a slope from bearing to one. In wet grinding, emptying is realized by the decantation principle, that is, by means of unloading through one of two trunnions.

With dry grinding, these mills often work in a closed cycle. A scheme of the conical ball mill supplied with an air separator is shown in Fig. 2.13. Air is fed to the mill by means of a fan. Carried off by air currents, the product arrives at the air separator, from which the coarse particles are returned by gravity via a tube into the mill. The finished product is trapped in a cyclone while the air is returned in the fan.

The ball mill is a tumbling mill that uses steel balls as the grinding media. The length of the cylindrical shell is usually 11.5 times the shell diameter (Figure 8.11). The feed can be dry, with less than 3% moisture to minimize ball coating, or slurry containing 2040% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, AG mills, or SAG mills.

Ball mills are filled up to 40% with steel balls (with 3080mm diameter), which effectively grind the ore. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture.

When hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. As mentioned earlier, pebble mills are widely used in the North American taconite iron ore operations. Since the weight of pebbles per unit volume is 3555% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus, in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly a higher capital cost. However, the increase in capital cost is justified economically by a reduction in operating cost attributed to the elimination of steel grinding media.

In general, ball mills can be operated either wet or dry and are capable of producing products in the order of 100m. This represents reduction ratios of as great as 100. Very large tonnages can be ground with these ball mills because they are very effective material handling devices. Ball mills are rated by power rather than capacity. Today, the largest ball mill in operation is 8.53m diameter and 13.41m long with a corresponding motor power of 22MW (Toromocho, private communications).

Modern ball mills consist of two chambers separated by a diaphragm. In the first chamber the steel-alloy balls (also described as charge balls or media) are about 90mm diameter. The mill liners are designed to lift the media as the mill rotates, so the comminution process in the first chamber is dominated by crushing. In the second chamber the ball diameters are of smaller diameter, between 60 and 15mm. In this chamber the lining is typically a classifying lining which sorts the media so that ball size reduces towards the discharge end of the mill. Here, comminution takes place in the rolling point-contact zone between each charge ball. An example of a two chamber ball mill is illustrated in Fig. 2.22.15

Much of the energy consumed by a ball mill generates heat. Water is injected into the second chamber of the mill to provide evaporative cooling. Air flow through the mill is one medium for cement transport but also removes water vapour and makes some contribution to cooling.

Grinding is an energy intensive process and grinding more finely than necessary wastes energy. Cement consists of clinker, gypsum and other components mostly more easily ground than clinker. To minimise over-grinding modern ball mills are fitted with dynamic separators (otherwise described as classifiers or more simply as separators). The working principle is that cement is removed from the mill before over-grinding has taken place. The cement is then separated into a fine fraction, which meets finished product requirements, and a coarse fraction which is returned to mill inlet. Recirculation factor, that is, the ratio of mill throughput to fresh feed is up to three. Beyond this, efficiency gains are minimal.

For more than 50years vertical mills have been the mill of choice for grinding raw materials into raw meal. More recently they have become widely used for cement production. They have lower specific energy consumption than ball mills and the separator, as in raw mills, is integral with the mill body.

In the Loesche mill, Fig. 2.23,16 two pairs of rollers are used. In each pair the first, smaller diameter, roller stabilises the bed prior to grinding which takes place under the larger roller. Manufacturers use different technologies for bed stabilisation.

Comminution in ball mills and vertical mills differs fundamentally. In a ball mill, size reduction takes place by impact and attrition. In a vertical mill the bed of material is subject to such a high pressure that individual particles within the bed are fractured, even though the particles are very much smaller than the bed thickness.

Early issues with vertical mills, such as narrower PSD and modified cement hydration characteristics compared with ball mills, have been resolved. One modification has been to install a hot gas generator so the gas temperature is high enough to partially dehydrate the gypsum.

For many decades the two-compartment ball mill in closed circuit with a high-efficiency separator has been the mill of choice. In the last decade vertical mills have taken an increasing share of the cement milling market, not least because the specific power consumption of vertical mills is about 30% less than that of ball mills and for finely ground cement less still. The vertical mill has a proven track record in grinding blastfurnace slag, where it has the additional advantage of being a much more effective drier of wet feedstock than a ball mill.

The vertical mill is more complex but its installation is more compact. The relative installed capital costs tend to be site specific. Historically the installed cost has tended to be slightly higher for the vertical mill.

Special graph paper is used with lglg(1/R(x)) on the abscissa and lg(x) on the ordinate axes. The higher the value of n, the narrower the particle size distribution. The position parameter is the particle size with the highest mass density distribution, the peak of the mass density distribution curve.

Vertical mills tend to produce cement with a higher value of n. Values of n normally lie between 0.8 and 1.2, dependent particularly on cement fineness. The position parameter is, of course, lower for more finely ground cements.

Separator efficiency is defined as specific power consumption reduction of the mill open-to-closed-circuit with the actual separator, compared with specific power consumption reduction of the mill open-to-closed-circuit with an ideal separator.

As shown in Fig. 2.24, circulating factor is defined as mill mass flow, that is, fresh feed plus separator returns. The maximum power reduction arising from use of an ideal separator increases non-linearly with circulation factor and is dependent on Rf, normally based on residues in the interval 3245m. The value of the comminution index, W, is also a function of Rf. The finer the cement, the lower Rf and the greater the maximum power reduction. At C = 2 most of maximum power reduction is achieved, but beyond C = 3 there is very little further reduction.

Separator particle separation performance is assessed using the Tromp curve, a graph of percentage separator feed to rejects against particle size range. An example is shown in Fig. 2.25. Data required is the PSD of separator feed material and of rejects and finished product streams. The bypass and slope provide a measure of separator performance.

The particle size is plotted on a logarithmic scale on the ordinate axis. The percentage is plotted on the abscissa either on a linear (as shown here) or on a Gaussian scale. The advantage of using the Gaussian scale is that the two parts of the graph can be approximated by two straight lines.

The measurement of PSD of a sample of cement is carried out using laser-based methodologies. It requires a skilled operator to achieve consistent results. Agglomeration will vary dependent on whether grinding aid is used. Different laser analysis methods may not give the same results, so for comparative purposes the same method must be used.

The ball mill is a cylindrical drum (or cylindrical conical) turning around its horizontal axis. It is partially filled with grinding bodies: cast iron or steel balls, or even flint (silica) or porcelain bearings. Spaces between balls or bearings are occupied by the load to be milled.

Following drum rotation, balls or bearings rise by rolling along the cylindrical wall and descending again in a cascade or cataract from a certain height. The output is then milled between two grinding bodies.

Ball mills could operate dry or even process a water suspension (almost always for ores). Dry, it is fed through a chute or a screw through the units opening. In a wet path, a system of scoops that turn with the mill is used and it plunges into a stationary tank.

Mechanochemical synthesis involves high-energy milling techniques and is generally carried out under controlled atmospheres. Nanocomposite powders of oxide, nonoxide, and mixed oxide/nonoxide materials can be prepared using this method. The major drawbacks of this synthesis method are: (1) discrete nanoparticles in the finest size range cannot be prepared; and (2) contamination of the product by the milling media.

More or less any ceramic composite powder can be synthesized by mechanical mixing of the constituent phases. The main factors that determine the properties of the resultant nanocomposite products are the type of raw materials, purity, the particle size, size distribution, and degree of agglomeration. Maintaining purity of the powders is essential for avoiding the formation of a secondary phase during sintering. Wet ball or attrition milling techniques can be used for the synthesis of homogeneous powder mixture. Al2O3/SiC composites are widely prepared by this conventional powder mixing route by using ball milling [70]. However, the disadvantage in the milling step is that it may induce certain pollution derived from the milling media.

In this mechanical method of production of nanomaterials, which works on the principle of impact, the size reduction is achieved through the impact caused when the balls drop from the top of the chamber containing the source material.

A ball mill consists of a hollow cylindrical chamber (Fig. 6.2) which rotates about a horizontal axis, and the chamber is partially filled with small balls made of steel, tungsten carbide, zirconia, agate, alumina, or silicon nitride having diameter generally 10mm. The inner surface area of the chamber is lined with an abrasion-resistant material like manganese, steel, or rubber. The magnet, placed outside the chamber, provides the pulling force to the grinding material, and by changing the magnetic force, the milling energy can be varied as desired. The ball milling process is carried out for approximately 100150h to obtain uniform-sized fine powder. In high-energy ball milling, vacuum or a specific gaseous atmosphere is maintained inside the chamber. High-energy mills are classified into attrition ball mills, planetary ball mills, vibrating ball mills, and low-energy tumbling mills. In high-energy ball milling, formation of ceramic nano-reinforcement by in situ reaction is possible.

It is an inexpensive and easy process which enables industrial scale productivity. As grinding is done in a closed chamber, dust, or contamination from the surroundings is avoided. This technique can be used to prepare dry as well as wet nanopowders. Composition of the grinding material can be varied as desired. Even though this method has several advantages, there are some disadvantages. The major disadvantage is that the shape of the produced nanoparticles is not regular. Moreover, energy consumption is relatively high, which reduces the production efficiency. This technique is suitable for the fabrication of several nanocomposites, which include Co- and Cu-based nanomaterials, Ni-NiO nanocomposites, and nanocomposites of Ti,C [71].

Planetary ball mill was used to synthesize iron nanoparticles. The synthesized nanoparticles were subjected to the characterization studies by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques using a SIEMENS-D5000 diffractometer and Hitachi S-4800. For the synthesis of iron nanoparticles, commercial iron powder having particles size of 10m was used. The iron powder was subjected to planetary ball milling for various period of time. The optimum time period for the synthesis of nanoparticles was observed to be 10h because after that time period, chances of contamination inclined and the particles size became almost constant so the powder was ball milled for 10h to synthesize nanoparticles [11]. Fig. 12 shows the SEM image of the iron nanoparticles.

The vibratory ball mill is another kind of high-energy ball mill that is used mainly for preparing amorphous alloys. The vials capacities in the vibratory mills are smaller (about 10 ml in volume) compared to the previous types of mills. In this mill, the charge of the powder and milling tools are agitated in three perpendicular directions (Fig. 1.6) at very high speed, as high as 1200 rpm.

Another type of the vibratory ball mill, which is used at the van der Waals-Zeeman Laboratory, consists of a stainless steel vial with a hardened steel bottom, and a single hardened steel ball of 6 cm in diameter (Fig. 1.7).

The mill is evacuated during milling to a pressure of 106 Torr, in order to avoid reactions with a gas atmosphere.[44] Subsequently, this mill is suitable for mechanical alloying of some special systems that are highly reactive with the surrounding atmosphere, such as rare earth elements.

In spite of the traditional approaches used for gas-solid reaction at relatively high temperature, Calka etal.[58] and El-Eskandarany etal.[59] proposed a solid-state approach, the so-called reactive ball milling (RBM), used for preparations different families of meal nitrides and hydrides at ambient temperature. This mechanically induced gas-solid reaction can be successfully achieved, using either high- or low-energy ball-milling methods, as shown in Fig.9.5. However, high-energy ball mill is an efficient process for synthesizing nanocrystalline MgH2 powders using RBM technique, it may be difficult to scale up for matching the mass production required by industrial sector. Therefore, from a practical point of view, high-capacity low-energy milling, which can be easily scaled-up to produce large amount of MgH2 fine powders, may be more suitable for industrial mass production.

In both approaches but with different scale of time and milling efficiency, the starting Mg metal powders milled under hydrogen gas atmosphere are practicing to dramatic lattice imperfections such as twinning and dislocations. These defects are caused by plastics deformation coupled with shear and impact forces generated by the ball-milling media.[60] The powders are, therefore, disintegrated into smaller particles with large surface area, where very clean or fresh oxygen-free active surfaces of the powders are created. Moreover, these defects, which are intensively located at the grain boundaries, lead to separate micro-scaled Mg grains into finer grains capable to getter hydrogen by the first atomically clean surfaces to form MgH2 nanopowders.

Fig.9.5 illustrates common lab scale procedure for preparing MgH2 powders, starting from pure Mg powders, using RBM via (1) high-energy and (2) low-energy ball milling. The starting material can be Mg-rods, in which they are processed via sever plastic deformation,[61] using for example cold-rolling approach,[62] as illustrated in Fig.9.5. The heavily deformed Mg-rods obtained after certain cold rolling passes can be snipped into small chips and then ball-milled under hydrogen gas to produce MgH2 powders.[8]

Planetary ball mills are the most popular mills used in scientific research for synthesizing MgH2 nanopowders. In this type of mill, the ball-milling media have considerably high energy, because milling stock and balls come off the inner wall of the vial and the effective centrifugal force reaches up to 20 times gravitational acceleration. The centrifugal forces caused by the rotation of the supporting disc and autonomous turning of the vial act on the milling charge (balls and powders). Since the turning directions of the supporting disc and the vial are opposite, the centrifugal forces alternately are synchronized and opposite. Therefore, the milling media and the charged powders alternatively roll on the inner wall of the vial, and are lifted and thrown off across the bowl at high speed.

In the typical experimental procedure, a certain amount of the Mg (usually in the range between 3 and 10g based on the vials volume) is balanced inside an inert gas atmosphere (argon or helium) in a glove box and sealed together with certain number of balls (e.g., 2050 hardened steel balls) into a hardened steel vial (Fig.9.5A and B), using, for example, a gas-temperature-monitoring system (GST). With the GST system, it becomes possible to monitor the progress of the gas-solid reaction taking place during the RBM process, as shown in Fig.9.5C and D. The temperature and pressure changes in the system during milling can be also used to realize the completion of the reaction and the expected end product during the different stages of milling (Fig.9.5D). The ball-to-powder weight ratio is usually selected to be in the range between 10:1 and 50:1. The vial is then evacuated to the level of 103bar before introducing H2 gas to fill the vial with a pressure of 550bar (Fig.9.5B). The milling process is started by mounting the vial on a high-energy ball mill operated at ambient temperature (Fig.9.5C).

Tumbling mill is cylindrical shell (Fig.9.6AC) that rotates about a horizontal axis (Fig.9.6D). Hydrogen gas is pressurized into the vial (Fig.9.6C) together with Mg powders and ball-milling media, using ball-to-powder weight ratio in the range between 30:1 and 100:1. Mg powder particles meet the abrasive and impacting force (Fig.9.6E), which reduce the particle size and create fresh-powder surfaces (Fig.9.6F) ready to react with hydrogen milling atmosphere.

Figure 9.6. Photographs taken from KISR-EBRC/NAM Lab, Kuwait, show (A) the vial and milling media (balls) and (B) the setup performed to charge the vial with 50bar of hydrogen gas. The photograph in (C) presents the complete setup of GST (supplied by Evico-magnetic, Germany) system prior to start the RBM experiment for preparing of MgH2 powders, using Planetary Ball Mill P400 (provided by Retsch, Germany). GST system allows us to monitor the progress of RBM process, as indexed by temperature and pressure versus milling time (D).

The useful kinetic energy in tumbling mill can be applied to the Mg powder particles (Fig.9.7E) by the following means: (1) collision between the balls and the powders; (2) pressure loading of powders pinned between milling media or between the milling media and the liner; (3) impact of the falling milling media; (4) shear and abrasion caused by dragging of particles between moving milling media; and (5) shock-wave transmitted through crop load by falling milling media. One advantage of this type of mill is that large amount of the powders (100500g or more based on the mill capacity) can be fabricated for each milling run. Thus, it is suitable for pilot and/or industrial scale of MgH2 production. In addition, low-energy ball mill produces homogeneous and uniform powders when compared with the high-energy ball mill. Furthermore, such tumbling mills are cheaper than high-energy mills and operated simply with low-maintenance requirements. However, this kind of low-energy mill requires long-term milling time (more than 300h) to complete the gas-solid reaction and to obtain nanocrystalline MgH2 powders.

Figure 9.7. Photos taken from KISR-EBRC/NAM Lab, Kuwait, display setup of a lab-scale roller mill (1000m in volume) showing (A) the milling tools including the balls (milling media and vial), (B) charging Mg powders in the vial inside inert gas atmosphere glove box, (C) evacuation setup and pressurizing hydrogen gas in the vial, and (D) ball milling processed, using a roller mill. Schematic presentations show the ball positions and movement inside the vial of a tumbler mall mill at a dynamic mode is shown in (E), where a typical ball-powder-ball collusion for a low energy tumbling ball mill is presented in (F).

The enterprises consumers grinding media have a question about right choise the grinding ball size (diameter) for the mill in order to achieve the required grinding quality. We noted earlier, this information can be obtained from several sources:

Technical documentation. It attached to the milling equipment (mill). Each mill manufacturer recommends certain grinding media type for mill operation under certain conditions: the crushed material parameters, the mills performance, the raw materials particle size in the mills feed, and the required grinding fineness (finished class content).

Past experience of a ball mill. It is possible to calculate the grinding media average diameter formed in the mill operation, during grinding media unload from mill (the grinding balls bulk weight in fully unloaded mill).

Other enterprises. It is possible to obtain the necessary data on a grinding media granulometric composition from other enterprises with a similar grinding process, including similar requirements to the grinding quality.

There is a mathematical solution to this problem the Bond formula. It uses to help determine the grinding media optimal size must be loaded into the ball mill for proper operation ensure. The calculation formula is below:

B the grinding balls diameter, mm; A the correction factor (for grinding balls A = 20,17; for cilpence A = 18,15); F the feedstock grain size in 80% of the material, m; K the grinding correction coefficient (for wet grinding 350; for dry grinding 355); S the grind material bulk mass, g/cc. It is a tabulated value. Wi specific energy consumption, kW*h/ton; C the mill drum rotational speed,% of the critical speed; D the mill internal diameter, m.

At result B = 25mm or less necessary to use the correction factor 1.3, i.e. the grinding balls average diameter should be 32.5 mm in the feed mixture. We draw your attention, a larger grinding balls need to use for future loads. As practice shows, the difference between the grinding balls average diameter in mill and loaded grinding balls diameter is 10-15 mm. In our example, the grinding balls diameter needed to load into the mill must be equal to 40-50 mm.

Lets sum up. The grinding balls diameter determined by the Bond formula has a recommendatory character and serves as a starting point for calculating the necessary proportion grinding media feeding a new mill. More precisely adjust the ball load in the mill can only by industrial test performing. During the industrial tests necessary to accurately monitor the grinding quality, mill productivity and other technological parameters adopted at the enterprise.

The ball mill accepts the SAG or AG mill product. Ball mills give a controlled final grind and produce flotation feed of a uniform size. Ball mills tumble iron or steel balls with the ore. The balls are initially 510 cm diameter but gradually wear away as grinding of the ore proceeds. The feed to ball mills (dry basis) is typically 75 vol.-% ore and 25% steel.

The ball mill is operated in closed circuit with a particle-size measurement device and size-control cyclones. The cyclones send correct-size material on to flotation and direct oversize material back to the ball mill for further grinding.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles, as well as collision energy. These forces are derived from the rotational motion of the balls and movement of particles within the mill and contact zones of colliding balls.

By rotation of the mill body, due to friction between mill wall and balls, the latter rise in the direction of rotation till a helix angle does not exceed the angle of repose, whereupon, the balls roll down. Increasing of rotation rate leads to growth of the centrifugal force and the helix angle increases, correspondingly, till the component of weight strength of balls become larger than the centrifugal force. From this moment the balls are beginning to fall down, describing during falling certain parabolic curves (Figure 2.7). With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls are attached to the wall due to centrifugation:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 6580% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

The degree of filling the mill with balls also influences productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 3035% of its volume.

The mill productivity also depends on many other factors: physical-chemical properties of feed material, filling of the mill by balls and their sizes, armor surface shape, speed of rotation, milling fineness and timely moving off of ground product.

where b.ap is the apparent density of the balls; l is the degree of filling of the mill by balls; n is revolutions per minute; 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption; a mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, i.e. during grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

The ball mill is a tumbling mill that uses steel balls as the grinding media. The length of the cylindrical shell is usually 11.5 times the shell diameter (Figure 8.11). The feed can be dry, with less than 3% moisture to minimize ball coating, or slurry containing 2040% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, AG mills, or SAG mills.

Ball mills are filled up to 40% with steel balls (with 3080mm diameter), which effectively grind the ore. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture.

When hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. As mentioned earlier, pebble mills are widely used in the North American taconite iron ore operations. Since the weight of pebbles per unit volume is 3555% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus, in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly a higher capital cost. However, the increase in capital cost is justified economically by a reduction in operating cost attributed to the elimination of steel grinding media.

In general, ball mills can be operated either wet or dry and are capable of producing products in the order of 100m. This represents reduction ratios of as great as 100. Very large tonnages can be ground with these ball mills because they are very effective material handling devices. Ball mills are rated by power rather than capacity. Today, the largest ball mill in operation is 8.53m diameter and 13.41m long with a corresponding motor power of 22MW (Toromocho, private communications).

Planetary ball mills. A planetary ball mill consists of at least one grinding jar, which is arranged eccentrically on a so-called sun wheel. The direction of movement of the sun wheel is opposite to that of the grinding jars according to a fixed ratio. The grinding balls in the grinding jars are subjected to superimposed rotational movements. The jars are moved around their own axis and, in the opposite direction, around the axis of the sun wheel at uniform speed and uniform rotation ratios. The result is that the superimposition of the centrifugal forces changes constantly (Coriolis motion). The grinding balls describe a semicircular movement, separate from the inside wall, and collide with the opposite surface at high impact energy. The difference in speeds produces an interaction between frictional and impact forces, which releases high dynamic energies. The interplay between these forces produces the high and very effective degree of size reduction of the planetary ball mill. Planetary ball mills are smaller than common ball mills, and are mainly used in laboratories for grinding sample material down to very small sizes.

Vibration mill. Twin- and three-tube vibrating mills are driven by an unbalanced drive. The entire filling of the grinding cylinders, which comprises the grinding media and the feed material, constantly receives impulses from the circular vibrations in the body of the mill. The grinding action itself is produced by the rotation of the grinding media in the opposite direction to the driving rotation and by continuous head-on collisions of the grinding media. The residence time of the material contained in the grinding cylinders is determined by the quantity of the flowing material. The residence time can also be influenced by using damming devices. The sample passes through the grinding cylinders in a helical curve and slides down from the inflow to the outflow. The high degree of fineness achieved is the result of this long grinding procedure. Continuous feeding is carried out by vibrating feeders, rotary valves, or conveyor screws. The product is subsequently conveyed either pneumatically or mechanically. They are basically used to homogenize food and feed.

CryoGrinder. As small samples (100 mg or <20 ml) are difficult to recover from a standard mortar and pestle, the CryoGrinder serves as an alternative. The CryoGrinder is a miniature mortar shaped as a small well and a tightly fitting pestle. The CryoGrinder is prechilled, then samples are added to the well and ground by a handheld cordless screwdriver. The homogenization and collection of the sample is highly efficient. In environmental analysis, this system is used when very small samples are available, such as small organisms or organs (brains, hepatopancreas, etc.).

The vibratory ball mill is another kind of high-energy ball mill that is used mainly for preparing amorphous alloys. The vials capacities in the vibratory mills are smaller (about 10 ml in volume) compared to the previous types of mills. In this mill, the charge of the powder and milling tools are agitated in three perpendicular directions (Fig. 1.6) at very high speed, as high as 1200 rpm.

Another type of the vibratory ball mill, which is used at the van der Waals-Zeeman Laboratory, consists of a stainless steel vial with a hardened steel bottom, and a single hardened steel ball of 6 cm in diameter (Fig. 1.7).

The mill is evacuated during milling to a pressure of 106 Torr, in order to avoid reactions with a gas atmosphere.[44] Subsequently, this mill is suitable for mechanical alloying of some special systems that are highly reactive with the surrounding atmosphere, such as rare earth elements.

A ball mill is a relatively simple apparatus in which the motion of the reactor, or of a part of it, induces a series of collisions of balls with each other and with the reactor walls (Suryanarayana, 2001). At each collision, a fraction of the powder inside the reactor is trapped between the colliding surfaces of the milling tools and submitted to a mechanical load at relatively high strain rates (Suryanarayana, 2001). This load generates a local nonhydrostatic mechanical stress at every point of contact between any pair of powder particles. The specific features of the deformation processes induced by these stresses depend on the intensity of the mechanical stresses themselves, on the details of the powder particle arrangement, that is on the topology of the contact network, and on the physical and chemical properties of powders (Martin et al., 2003; Delogu, 2008a). At the end of any given collision event, the powder that has been trapped is remixed with the powder that has not undergone this process. Correspondingly, at any instant in the mechanical processing, the whole powder charge includes fractions of powder that have undergone a different number of collisions.

The individual reactive processes at the perturbed interface between metallic elements are expected to occur on timescales that are, at most, comparable with the collision duration (Hammerberg et al., 1998; Urakaev and Boldyrev, 2000; Lund and Schuh, 2003; Delogu and Cocco, 2005a,b). Therefore, unless the ball mill is characterized by unusually high rates of powder mixing and frequency of collisions, reactive events initiated by local deformation processes at a given collision are not affected by a successive collision. Indeed, the time interval between successive collisions is significantly longer than the time period required by local structural perturbations for full relaxation (Hammerberg et al., 1998; Urakaev and Boldyrev, 2000; Lund and Schuh, 2003; Delogu and Cocco, 2005a,b).

These few considerations suffice to point out the two fundamental features of powder processing by ball milling, which in turn govern the MA processes in ball mills. First, mechanical processing by ball milling is a discrete processing method. Second, it has statistical character. All of this has important consequences for the study of the kinetics of MA processes. The fact that local deformation events are connected to individual collisions suggests that absolute time is not an appropriate reference quantity to describe mechanically induced phase transformations. Such a description should rather be made as a function of the number of collisions (Delogu et al., 2004). A satisfactory description of the MA kinetics must also account for the intrinsic statistical character of powder processing by ball milling. The amount of powder trapped in any given collision, at the end of collision is indeed substantially remixed with the other powder in the reactor. It follows that the same amount, or a fraction of it, could at least in principle be trapped again in the successive collision.

This is undoubtedly a difficult aspect to take into account in a mathematical description of MA kinetics. There are at least two extreme cases to consider. On the one hand, it could be assumed that the powder trapped in a given collision cannot be trapped in the successive one. On the other, it could be assumed that powder mixing is ideal and that the amount of powder trapped at a given collision has the same probability of being processed in the successive collision. Both these cases allow the development of a mathematical model able to describe the relationship between apparent kinetics and individual collision events. However, the latter assumption seems to be more reliable than the former one, at least for commercial mills characterized by relatively complex displacement in the reactor (Manai et al., 2001, 2004).

A further obvious condition for the successful development of a mathematical description of MA processes is the one related to the uniformity of collision regimes. More specifically, it is highly desirable that the powders trapped at impact always experience the same conditions. This requires the control of the ball dynamics inside the reactor, which can be approximately obtained by using a single milling ball and an amount of powder large enough to assure inelastic impact conditions (Manai et al., 2001, 2004; Delogu et al., 2004). In fact, the use of a single milling ball avoids impacts between balls, which have a remarkable disordering effect on the ball dynamics, whereas inelastic impact conditions permit the establishment of regular and periodic ball dynamics (Manai et al., 2001, 2004; Delogu et al., 2004).

All of the above assumptions and observations represent the basis and guidelines for the development of the mathematical model briefly outlined in the following. It has been successfully applied to the case of a Spex Mixer/ Mill mod. 8000, but the same approach can, in principle, be used for other ball mills.

The Planetary ball mills are the most popular mills used in MM, MA, and MD scientific researches for synthesizing almost all of the materials presented in Figure 1.1. In this type of mill, the milling media have considerably high energy, because milling stock and balls come off the inner wall of the vial (milling bowl or vial) and the effective centrifugal force reaches up to 20 times gravitational acceleration.

The centrifugal forces caused by the rotation of the supporting disc and autonomous turning of the vial act on the milling charge (balls and powders). Since the turning directions of the supporting disc and the vial are opposite, the centrifugal forces alternately are synchronized and opposite. Therefore, the milling media and the charged powders alternatively roll on the inner wall of the vial, and are lifted and thrown off across the bowl at high speed, as schematically presented in Figure 2.17.

However, there are some companies in the world who manufacture and sell number of planetary-type ball mills; Fritsch GmbH (www.fritsch-milling.com) and Retsch (http://www.retsch.com) are considered to be the oldest and principal companies in this area.

Fritsch produces different types of planetary ball mills with different capacities and rotation speeds. Perhaps, Fritsch Pulverisette P5 (Figure 2.18(a)) and Fritsch Pulverisette P6 (Figure 2.18(b)) are the most popular models of Fritsch planetary ball mills. A variety of vials and balls made of different materials with different capacities, starting from 80ml up to 500ml, are available for the Fritsch Pulverisette planetary ball mills; these include tempered steel, stainless steel, tungsten carbide, agate, sintered corundum, silicon nitride, and zirconium oxide. Figure 2.19 presents 80ml-tempered steel vial (a) and 500ml-agate vials (b) together with their milling media that are made of the same materials.

Figure 2.18. Photographs of Fritsch planetary-type high-energy ball mill of (a) Pulverisette P5 and (b) Pulverisette P6. The equipment is housed in the Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR).

Figure 2.19. Photographs of the vials used for Fritsch planetary ball mills with capacity of (a) 80ml and (b) 500ml. The vials and the balls shown in (a) and (b) are made of tempered steel agate materials, respectively (Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR)).

More recently and in year 2011, Fritsch GmbH (http://www.fritsch-milling.com) introduced a new high-speed and versatile planetary ball mill called Planetary Micro Mill PULVERISETTE 7 (Figure 2.20). The company claims this new ball mill will be helpful to enable extreme high-energy ball milling at rotational speed reaching to 1,100rpm. This allows the new mill to achieve sensational centrifugal accelerations up to 95 times Earth gravity. They also mentioned that the energy application resulted from this new machine is about 150% greater than the classic planetary mills. Accordingly, it is expected that this new milling machine will enable the researchers to get their milled powders in short ball-milling time with fine powder particle sizes that can reach to be less than 1m in diameter. The vials available for this new type of mill have sizes of 20, 45, and 80ml. Both the vials and balls can be made of the same materials, which are used in the manufacture of large vials used for the classic Fritsch planetary ball mills, as shown in the previous text.

Retsch has also produced a number of capable high-energy planetary ball mills with different capacities (http://www.retsch.com/products/milling/planetary-ball-mills/); namely Planetary Ball Mill PM 100 (Figure 2.21(a)), Planetary Ball Mill PM 100 CM, Planetary Ball Mill PM 200, and Planetary Ball Mill PM 400 (Figure 2.21(b)). Like Fritsch, Retsch offers high-quality ball-milling vials with different capacities (12, 25, 50, 50, 125, 250, and 500ml) and balls of different diameters (540mm), as exemplified in Figure 2.22. These milling tools can be made of hardened steel as well as other different materials such as carbides, nitrides, and oxides.

Figure 2.21. Photographs of Retsch planetary-type high-energy ball mill of (a) PM 100 and (b) PM 400. The equipment is housed in the Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR).

Figure 2.22. Photographs of the vials used for Retsch planetary ball mills with capacity of (a) 80ml, (b) 250ml, and (c) 500ml. The vials and the balls shown are made of tempered steel (Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR)).

Both Fritsch and Retsch companies have offered special types of vials that allow monitoring and measure the gas pressure and temperature inside the vial during the high-energy planetary ball-milling process. Moreover, these vials allow milling the powders under inert (e.g., argon or helium) or reactive gas (e.g., hydrogen or nitrogen) with a maximum gas pressure of 500kPa (5bar). It is worth mentioning here that such a development made on the vials design allows the users and researchers to monitor the progress tackled during the MA and MD processes by following up the phase transformations and heat realizing upon RBM, where the interaction of the gas used with the freshly created surfaces of the powders during milling (adsorption, absorption, desorption, and decomposition) can be monitored. Furthermore, the data of the temperature and pressure driven upon using this system is very helpful when the ball mills are used for the formation of stable (e.g., intermetallic compounds) and metastable (e.g., amorphous and nanocrystalline materials) phases. In addition, measuring the vial temperature during blank (without samples) high-energy ball mill can be used as an indication to realize the effects of friction, impact, and conversion processes.

More recently, Evico-magnetics (www.evico-magnetics.de) has manufactured an extraordinary high-pressure milling vial with gas-temperature-monitoring (GTM) system. Likewise both system produced by Fritsch and Retsch, the developed system produced by Evico-magnetics, allowing RBM but at very high gas pressure that can reach to 15,000kPa (150bar). In addition, it allows in situ monitoring of temperature and of pressure by incorporating GTM. The vials, which can be used with any planetary mills, are made of hardened steel with capacity up to 220ml. The manufacturer offers also two-channel system for simultaneous use of two milling vials.

Using different ball mills as examples, it has been shown that, on the basis of the theory of glancing collision of rigid bodies, the theoretical calculation of tPT conditions and the kinetics of mechanochemical processes are possible for the reactors that are intended to perform different physicochemical processes during mechanical treatment of solids. According to the calculations, the physicochemical effect of mechanochemical reactors is due to short-time impulses of pressure (P = ~ 10101011 dyn cm2) with shift, and temperature T(x, t). The highest temperature impulse T ~ 103 K are caused by the dry friction phenomenon.

Typical spatial and time parameters of the impactfriction interaction of the particles with a size R ~ 104 cm are as follows: localization region, x ~ 106 cm; time, t ~ 108 s. On the basis of the obtained theoretical results, the effect of short-time contact fusion of particles treated in various comminuting devices can play a key role in the mechanism of activation and chemical reactions for wide range of mechanochemical processes. This role involves several aspects, that is, the very fact of contact fusion transforms the solid phase process onto another qualitative level, judging from the mass transfer coefficients. The spatial and time characteristics of the fused zone are such that quenching of non-equilibrium defects and intermediate products of chemical reactions occurs; solidification of the fused zone near the contact point results in the formation of a nanocrystal or nanoamor- phous state. The calculation models considered above and the kinetic equations obtained using them allow quantitative ab initio estimates of rate constants to be performed for any specific processes of mechanical activation and chemical transformation of the substances in ball mills.

There are two classes of ball mills: planetary and mixer (also called swing) mill. The terms high-speed vibration milling (HSVM), high-speed ball milling (HSBM), and planetary ball mill (PBM) are often used. The commercial apparatus are PBMs Fritsch P-5 and Fritsch Pulverisettes 6 and 7 classic line, the Retsch shaker (or mixer) mills ZM1, MM200, MM400, AS200, the Spex 8000, 6750 freezer/mill SPEX CertiPrep, and the SWH-0.4 vibrational ball mill. In some instances temperature controlled apparatus were used (58MI1); freezer/mills were used in some rare cases (13MOP1824).

The balls are made of stainless steel, agate (SiO2), zirconium oxide (ZrO2), or silicon nitride (Si3N). The use of stainless steel will contaminate the samples with steel particles and this is a problem both for solid-state NMR and for drug purity.

However, there are many types of ball mills (see Chapter 2 for more details), such as drum ball mills, jet ball mills, bead-mills, roller ball mills, vibration ball mills, and planetary ball mills, they can be grouped or classified into two types according to their rotation speed, as follows: (i) high-energy ball mills and (ii) low-energy ball mills. Table 3.1 presents characteristics and comparison between three types of ball mills (attritors, vibratory mills, planetary ball mills and roller mills) that are intensively used on MA, MD, and MM techniques.

In fact, choosing the right ball mill depends on the objectives of the process and the sort of materials (hard, brittle, ductile, etc.) that will be subjecting to the ball-milling process. For example, the characteristics and properties of those ball mills used for reduction in the particle size of the starting materials via top-down approach, or so-called mechanical milling (MM process), or for mechanically induced solid-state mixing for fabrications of composite and nanocomposite powders may differ widely from those mills used for achieving mechanically induced solid-state reaction (MISSR) between the starting reactant materials of elemental powders (MA process), or for tackling dramatic phase transformation changes on the structure of the starting materials (MD). Most of the ball mills in the market can be employed for different purposes and for preparing of wide range of new materials.

Martinez-Sanchez et al. [4] have pointed out that employing of high-energy ball mills not only contaminates the milled amorphous powders with significant volume fractions of impurities that come from milling media that move at high velocity, but it also affects the stability and crystallization properties of the formed amorphous phase. They have proved that the properties of the formed amorphous phase (Mo53Ni47) powder depends on the type of the ball-mill equipment (SPEX 8000D Mixer/Mill and Zoz Simoloter mill) used in their important investigations. This was indicated by the high contamination content of oxygen on the amorphous powders prepared by SPEX 8000D Mixer/Mill, when compared with the corresponding amorphous powders prepared by Zoz Simoloter mill. Accordingly, they have attributed the poor stabilities, indexed by the crystallization temperature of the amorphous phase formed by SPEX 8000D Mixer/Mill to the presence of foreign matter (impurities).

The "Critical Speed" for a grinding mill is defined as the rotational speed where centrifugal forces equal gravitational forces at the mill shell's inside surface. This is the rotational speed where balls will not fall away from the mill's shell.

Enter the width of a mill shell liner. Note this is not the width of a lifter! You may use the Mill Liner Effective Width calculation to determine this value. The mill critical speed will be calculated based on the diameter (above) less twice this shell liner width.

DEAR EXPERTS PLEASE TELL ME HOW TO CALCULATE THE GRINDING EFFICIENCY OF A CLOSED CKT & OPEN CKT BALL MILL. IN LITERATURES IT IS WRITTEN THAT THE GRINDING EFFICIENCY OF BALL MILL IS VERY LESS [LESS THAN 10%]. PLEASE EXPALIN IN A N EXCEL SHEET TO CALCUALTE THE SAME. THANKS SIDHANT

Ball nose end mills are ideal for machining 3-dimensional contour shapes typically found in the mold and die industry, the manufacturing of turbine blades, and fulfilling general part radius requirements. To properly employ a ball nose end mill (with no tilt angle) and gain the optimal tool life and part finish, follow the 2-step process below (see Figure 1).

A ball nose end mills Effective Cutting Diameter (Deff) differs from its actual cutting diameter when utilizing an Axial Depth of Cut (ADOC) that is less than the full radius of the ball. Calculating the effective cutting diameter can be done using the chart below that represents some common tool diameters and ADOC combinations or by using the traditional calculation (see Figure 2).

Given the new effective cutting diameter a Compensated Speed will need to be calculated. If you are using less than the cutter diameter, then its likely your RPMs will need to be adjusted upward (see Figure 3).

If possible, it is highly recommended to use ball nose end mills on an incline () to avoid a 0 SFM condition at the center of the tool, thus increasing tool life and part finish (Figure 4). For ball nose optimization (and in addition to tilting the tool), it is highly recommended to feed the tool in the direction of the incline and utilize a climb milling technique.

Given the new effective cutting diameter a compensated speed will need to be calculated. If you are using less than the cutter diameter, then its likely your RPMs will need to be adjusted upward (see Figure 6).

Thank you for this milling strategy guide. I especially appreciate your insight on milling with a tilt angle. I was unaware that this could extend the life of the bit. I will keep this in mind while milling in the future.

More You May Like

Copyright © 2021 Indext Machinery All rights reserved sitemap Privacy Policy