ball mill gold ore extraction equipment with and

mineral processing, equipment manufacturers, ball mills, flotation, thickener - xinhai

Xinhai devotes to providing Turn-key Solutions for Mineral Processing Plant (EPC+M+O), namely design and research - complete equipment manufacturing and procurement - commissioning and delivery - mine management - mine operation. The essence of EPC+M+O Service is to ensure sound work in every link. The model is suitable for most of the mines in the world.

Focusing on the research and development and innovation of mineral processing equipment, Xinhai has won more than 100 national patents, strives for perfection, strives to complete the combination of equipment and technology, improve productivity, reduce energy consumption, extend equipment stable operation time, and provide cost-effective services.

With Class B design qualifications in the metallurgical industry, rich in ore mining, beneficiation, smelting technology and experience, completed more than 2,000 mine design and research, not only can provide customers with a reasonable process, but also can provide customized equipment configuration.

The precious metal minerals are mainly gold and silver mines. Xinhai Mining has more than 20 years of experience in beneficiation for gold and silver mines, especially gold ore beneficiation technology. Gold craft and placer gold selection craft etc.

With Class B design qualification, it can provide accurate tests for more than 70 kinds of minerals and design a reasonable beneficiation process. In addition, it can also provide customized complete set of mineral processing equipment and auxiliary parts.

Xinhai can provide the all-round and one-stop mineral processing plant service for clients, solving all the mine construction, operation, management problems, devoting to provide modern, high-efficiency.

Through mineral processing experiment, the mineral processing flow is customized. Multiple tests are carried out in every link, and make sure the final processing flow to guarantee the successful mineral processing plant construction.

According to tailing processing technology, Xinhai has tailings reprocessing technology and tailings dry stacking. Tailings dry stacking is the self-launched tailings dewatering technology, which is the effective technology in green mine construction.

More than 2,000 mine design and research, equipment supply projects, more than 500 mining industry chain services (EPC+M+O) projects in more than 90 countries and regions around the world, we are always committed to providing you with one-stop, customized Chemical mine solution!

gold mining equipment

911MPE hassmall gold mining equipment for sale andmore specifically mineral processing equipment. Our equipment is best used in small scale extractive metallurgyoperations operated by small miners or hobbyist prospectors and mining fanatics. 911MPE offers gold mining equipment as well as processing equipment applicable to most any base metals: copper, lead, zinc, nickel, tin, tungsten and more. For the relatively small size of equipment offered, sample preparation and metallurgical laboratories can economically buy good alternatives to the usually unaffordable equipment for sale in the classic market place.

911MPE has for target market what mining professionals consider the pilot-plant scale mining operation or artisanal mining operations with a focus around under 500TPD. Metals you can extract include: gold, silver or other of the precious group as well as the classic base metals; copper, lead, zinc, nickel, molybdenum. Much of our ultra-small scale equipment allows you to process from just a few kilo (pounds) per day and work on your passion for a small budget.

You can buy from us mineral processing equipment starting from crushing, grinding, classification, dredging, gravity separation, flotation, pumps, water treatment and smelting. A line of ovens, furnaces and laboratory equipment is also available.

Making a complete list of gold mining equipment starts with defining the type of gold mining you are doing and the budget you have at your disposal. The type of mining relates to hard rock,eluvial, or placer; alluvial deposits. The capital budget you have to invest in buying your equipment with dictate the scale at which you want to mine and influence the long-term operating costs of your mining operation.

Since most of the information online provides lists of gold mining equipment for amateur level mining with equipment like: gold pans, metal detectors, mini sluice box, blue bowl, geologist rock pick, soil scoop, hand screens/classifiers. The items listed just now fall closer to gold prospecting tools and equipment than actual mining.

I will present here what I consider are major equipment lists for 3 types of mining operations. Remember now, a metallurgist is writing. This will not be flawless and since my speciality is process equipment, that is mostly what will be discussed.

Some amateur level gold prospecting equipment such as metal detectors are often classified as mining equipment by small miners/prospectors operating as a hobby. These items include but are not limited to:

5 gold extraction methods to improve your recovery rate | fote machinery

The crushing and screening stage in the industry is mainly composed of three-stage and a closed-circuit process. Gold ores need to go through coarse, medium, and fine crushing processes to be minimized into smaller pieces. The screening equipment is used to sieving the smaller gold ores into the proper size for the next steps.

The grinding operation usually adopts one or two ball mills with types of lattice and overflow. The second stage grinding operation forms a closed circuit with a spiral classifier or a hydro cyclone to ensure the grinding fineness.

Since traditional ball milling equipment appears some shortcomings such as fast wear and large energy consumption, many manufacturers adopt new wear-resisting rubber lining boards, sliding bearing to improve a mill operation efficiency and prolong a machine's service life.

The beneficiation stage is a crucial part of gold extraction during the whole gold ore processing plant. Placer gold mine and rock gold mine are most widely processed to extract gold concentration.

The gold slurry process of the carbon slurry method (CIP and CIL) is to put activated carbon into cyanide ore slurry, adsorb dissolved gold on activated carbon, and finally to extract gold from activated carbon.

Equipment required for carbon slurry gold mining process: Leaching mixing tank, activated carbon screen, Two-layer (three-layer) washing and thickening machine, fast desorption electrolysis system with high-efficiency and low-consumption, high-frequency dewatering screen.

It means that by ion exchange resin, gold also can be extracted from ore pulp. Like carbon, the process makes gold absorbed onto solid spherical polystyrene resin beads instead of activated carbon grains.

According to different physical and chemical properties of different types of gold ores, flotation separation utilizes various reagents to make the gold attached to the bubbles then scraping these gold particles from blades to get the concentrate.

A jigger is one of the main pieces of equipment in the gravity separation process. The jigging process mixes gold ore particles of different specific gravity together, then stratifying these particles. The minerals with small specific gravity will be on the upper layer while the minerals with large specific gravity will be on the lower layer.

A shaking table is used to process gold ores in the horizontal medium flow. The motor drives the surface of the shaker to perform the longitudinal reciprocating motion, as well as the differential motion of the washing stream and the surface of the bed. Gold ore particles are stratified perpendicular to the surface of the bed, then being separated parallel to the surface of the bed in reciprocating motion which allows gold ores with different particle sizes to be discharged from different parts to achieve separation.

It adopts lope water flow to achieve separation. With the effect of the combined force of water flow, mineral gravity, the friction created by the bottom of the tank, and ore particles, the gold ore particles will settle in different areas of the tank. The ore particles with small specific gravity will flow away with the water, while ore particles with larger specific gravity would stay.

Metso company is a world-leading industrial company offering equipment and services for the sustainable processing and flow of natural resources in the mining, aggregates, recycling, and process industries.

SGS Company is a multinational company headquartered in Geneva, Switzerland, providing inspection, verification, testing, and certification services. It's ranked by Forbes as one of 2017 Top Multinational Performers.

Henan Fote Heavy Machinery Co., Ltd. (FTM) has more than 40-year experience in the design of gold mining equipment processes. Its beneficiation equipment and plants sales to many countries including Tanzania, India, South Africa, the United Kingdom and other regions. According to the actual needs of customers, all machines can be customized here.

As a leading mining machinery manufacturer and exporter in China, we are always here to provide you with high quality products and better services. Welcome to contact us through one of the following ways or visit our company and factories.

Based on the high quality and complete after-sales service, our products have been exported to more than 120 countries and regions. Fote Machinery has been the choice of more than 200,000 customers.

gold processing | britannica

For thousands of years the word gold has connoted something of beauty or value. These images are derived from two properties of gold, its colour and its chemical stability. The colour of gold is due to the electronic structure of the gold atom, which absorbs electromagnetic radiation with wavelengths less than 5600 angstroms but reflects wavelengths greater than 5600 angstromsthe wavelength of yellow light. Golds chemical stability is based on the relative instability of the compounds that it forms with oxygen and watera characteristic that allows gold to be refined from less noble metals by oxidizing the other metals and then separating them from the molten gold as a dross. However, gold is readily dissolved in a number of solvents, including oxidizing solutions of hydrochloric acid and dilute solutions of sodium cyanide. Gold readily dissolves in these solvents because of the formation of complex ions that are very stable.

Gold (Au) melts at a temperature of 1,064 C (1,947 F). Its relatively high density (19.3 grams per cubic centimetre) has made it amenable to recovery by placer mining and gravity concentration techniques. With a face-centred cubic crystal structure, it is characterized by a softness or malleability that lends itself to being shaped into intricate structures without sophisticated metalworking equipment. This in turn has led to its application, from earliest times, to the fabrication of jewelry and decorative items.

The history of gold extends back at least 6,000 years, the earliest identifiable, realistically dated finds having been made in Egypt and Mesopotamia c. 4000 bc. The earliest major find was located on the Bulgarian shores of the Black Sea near the present city of Varna. By 3000 bc gold rings were used as a method of payment. Until the time of Christ, Egypt remained the centre of gold production. Gold was, however, also found in India, Ireland, Gaul, and the Iberian Peninsula. With the exception of coinage, virtually all uses of the metal were decorativee.g., for weapons, goblets, jewelry, and statuary.

Egyptian wall reliefs from 2300 bc show gold in various stages of refining and mechanical working. During these ancient times, gold was mined from alluvial placersthat is, particles of elemental gold found in river sands. The gold was concentrated by washing away the lighter river sands with water, leaving behind the dense gold particles, which could then be further concentrated by melting. By 2000 bc the process of purifying gold-silver alloys with salt to remove the silver was developed. The mining of alluvial deposits and, later, lode or vein deposits required crushing prior to gold extraction, and this consumed immense amounts of manpower. By ad 100, up to 40,000 slaves were employed in gold mining in Spain. The advent of Christianity somewhat tempered the demand for gold until about the 10th century. The technique of amalgamation, alloying with mercury to improve the recovery of gold, was discovered at about this time.

The colonization of South and Central America that began during the 16th century resulted in the mining and refining of gold in the New World before its transferal to Europe; however, the American mines were a greater source of silver than gold. During the early to mid-18th century, large gold deposits were discovered in Brazil and on the eastern slopes of the Ural Mountains in Russia. Major alluvial deposits were found in Siberia in 1840, and gold was discovered in California in 1848. The largest gold find in history is in the Witwatersrand of South Africa. Discovered in 1886, it produced 25 percent of the worlds gold by 1899 and 40 percent by 1985. The discovery of the Witwatersrand deposit coincided with the discovery of the cyanidation process, which made it possible to recover gold values that had escaped both gravity concentration and amalgamation. With E.B. Millers process of refining impure gold with chlorine gas (patented in Britain in 1867) and Emil Wohlwills electrorefining process (introduced in Hamburg, Ger., in 1878), it became possible routinely to achieve higher purities than had been allowed by fire refining.

The major ores of gold contain gold in its native form and are both exogenetic (formed at the Earths surface) and endogenetic (formed within the Earth). The best-known of the exogenetic ores is alluvial gold. Alluvial gold refers to gold found in riverbeds, streambeds, and floodplains. It is invariably elemental gold and usually made up of very fine particles. Alluvial gold deposits are formed through the weathering actions of wind, rain, and temperature change on rocks containing gold. They were the type most commonly mined in antiquity. Exogenetic gold can also exist as oxidized ore bodies that have formed under a process called secondary enrichment, in which other metallic elements and sulfides are gradually leached away, leaving behind gold and insoluble oxide minerals as surface deposits.

Endogenetic gold ores include vein and lode deposits of elemental gold in quartzite or mixtures of quartzite and various iron sulfide minerals, particularly pyrite (FeS2) and pyrrhotite (Fe1-xS). When present in sulfide ore bodies, the gold, although still elemental in form, is so finely disseminated that concentration by methods such as those applied to alluvial gold is impossible.

Native gold is the most common mineral of gold, accounting for about 80 percent of the metal in the Earths crust. It occasionally is found as nuggets as large as 12 millimetres (0.5 inch) in diameter, and on rare occasions nuggets of native gold weighing up to 50 kilograms are foundthe largest having weighed 92 kilograms. Native gold invariably contains about 0.1 to 4 percent silver. Electrum is a gold-silver alloy containing 20 to 45 percent silver. It varies from pale yellow to silver white in colour and is usually associated with silver sulfide mineral deposits.

Gold also forms minerals with the element tellurium; the most common of these are calaverite (AuTe2) and sylvanite (AuAgTe4). Other minerals of gold are sufficiently rare as to have little economic significance.

Of the worlds known mineral reserves of gold ore, 50 percent is found in South Africa, and most of the rest is divided among Russia, Canada, Australia, Brazil, and the United States. The largest single gold ore body in the world is in the Witwatersrand of South Africa.

mining business plan

The following document outlines a mining business proposal to design and construct a free standing toll plant facility, known in this document as Peru Toll Treatment (PTT), in southern Peru to accommodate the needs of a growing quantity of small scale miners who produce up to 14 percent of the countrys annual gold production. The plan includes the basic design criteria on which the plant will be built, the model for generating revenue and a detailed annual cash flow forecast for the proposed operation for a period of ten years.

The proposed 7.5 tonne per hour plant will cost approximately $2.9 million to design (including $473,000 in VAT taxes which will be reimbursed from revenues), construct and startup and will generate revenues by providing a custom milling facility for small producers who sell their production to the plant. This business opportunity does not include any involvement in mining or the production of mineral. It only involves the purchase and treatment of gold minerals. While the market for such a plant can easily accommodate a 350 tonne per day operation the business plan is based on processing 150 tonnes per day only with the ability to later expand to multiple plants of 350 tonnes per day each.

The plan calls for raising the $2.9 million from public equity financings. Once in operation, the operating company will retain $250,000 for working capital and all subsequent profits will be paid to the shareholders every 3 months as a dividend. The cash flow model is for a single plant of 150 tonnes per day, calculated on an after tax (Peruvian fiscal regime) basis for a 10 year project life. On a project basis using a $1500 per ounce gold price and a discount rate of 10 percent the project will generate a net present value of almost $22.0 million. The payout of the capital investment on a project basis is 1.1 years and the calculated rate of return is over 200%. Testing the project economics against changes in the primary input variables (capital cost, operating cost and gold price) indicates that the project is very robust and even with significant increases in costs or reductions in revenue sources the project has a positive rate of return.

Appendix 5 of this Business Plan includes expressions of interest from two formal miners who are 100% owners of their concessions and can offer 450 tonnes per day of production. PTT has visited one of the mines and confirms the potential for a 350 tonne per day operation. In order to facilitate the commencement of mining production PTT intends to rent $100,000 of mining equipment to these owners as part of a preferred mineral provider position. This cost has been included in the project economics.

This Business Plan is based on the construction and operation of 1 plant to demonstrate the profitability of the toll treatment plant concept. During this first year of operation the management will be evaluating expansion opportunities in other areas of the country as well as at the current site. PTT intends to build and operate 4 350 tonne per day gold plants in Peru within 5 years and the company will generate an estimated after tax, net cash flow of $40 million per annum.

PTT believes that health, environmental and social improvements will accrue to the informal miners in those areas of Peru in which the Company operates and these are important aspects of the expansion phase of the project. Current informal mining practice involves the uncontrolled use of the toxic substances mercury and sodium cyanide to obtain the gold at very low recovery rates. Many of the informal miners are, in effect, stealing the gold from the government or legitimate concession holders causing significant social disruption in the affected areas of the country. It is, therefore, an important aspect of this business plan to reduce the negative health and environmental aspects of informal mining activity by offering an advanced technology which safely removes up to 90% of the gold from the ores resulting in a much higher payback to the people who mine the ore. Purchasing gold ores from informal miners who do not own their concessions is illegal in Peru and rightfully so. It is the intention of PTT to work with informal miners to ensure that they legitimize their activities by entering into registered contracts with the owners of the mineral resources.

There are risks to the project but most can be mitigated by doing appropriate engineering prior to plant design and construction. The plant will use standard gold processing technology and country/political risk is the greatest threat to the project. Peru has signed free trade agreements with both Canada and the United States which is normalizing its business activities.

From the days of the Spanish conquest, foreigners have come in search of theproducts of Perus mines and the mining sector has been a core part of the economy up until the modern era. Operations at the historic zinc-mining center of Cerro de Pasco began in 1905 and the Metallurgical Complex at La Oroya started production in 1922. Much of Perus rail network was created to serve the needs of the mining industry. Nevertheless, relatively little exploration was carried out in the 1960s and 1970s and development of the mining sector came to a halt. Perus favorable geology has been under-exploited and while reserves have been exploited intensively in the US, Canada and Chile, to date only about 12 per cent of Perus mineral resources have been identified.Peril has the capacity to double or triple current levels of output, especially in base metals. In all, Peru holds about 16 per cent of the worlds known mineral reserves, including 15 per cent of copper and 7 per cent of zinc reserves.

Mining activity contributes 45% of foreign currency to the national economy which implies investment commitments, promotion of a modern managerial philosophy, increased responsibility towards safety and care of the environment as well as improved rural social development.

While mining provides relatively few jobs, it is vital to Perus economy in other ways. Thanks both to high mineral prices and rising output, mineral exports were up by almost half last year, and accounted for 55% of total exports. Mining brings in 29% of total tax revenues. Of this money, the government last year returned $138m as a local royalty to mining areas, most of which are otherwise poor and remote.

As a result of its favourable geology and improving economy Peru is taking a dominant position in the production and sale of many base and precious metals. It occupies first place in Latin America in zinc, tin, lead and gold; second place in silver and copper; fifth in iron. In the context of world mining production, Peru is in fifth place in gold, second place in silver, third place in tin, fourth place in zinc and lead, fifth place in copper and twenty-fifth place in iron as shown on Table 1 below.

Since the constitutional and business/economic reforms of the early 1990s Peru has enjoyed a robust economy with strong economic growth tied closely to the business cycles of its primary metals production. The country allows any person or company to create and own a Peruvian entity and all profits can be repatriated to another jurisdiction free of additional levies.

The tax code is relatively simple and taxes are calculated as 30% of net profits after depreciation. Machinery and equipment are all subject to depreciation on a straight line basis and the majority of items are considered to have a 10 year life. A recently introduced royalty provision requires an additional payment to the government depending upon mine production level the higher the production level, the higher the royalty to a maximum of 3% of sales. Currently small producers (less than 350 tonnes per day) are exempt from this royalty.

Labour laws are not restrictive and employee burden is approximately 30% of base salary. Unskilled labour is relatively inexpensive and university trained and skilled trades labour are paid commensurate with the level of training. Skilled and professional talent exists in abundance and is of a high quality.

Peru has a long history of political instability. In 1993 Alberto Fujimori enacted several far-reaching legal and constitutional reforms which have stabilized the political situation. Although he left the country under a cloud of suspicion in 2001, his legacy is a well performing economy and a gradually improving jurisprudence and governing infrastructure. As the government bureaucracy becomes more stable and professional the incidence of corruption is diminishing. Corruption remains an unfortunate fact of life in Peru but it has noticeably declined in the past 10 years.

The governments of Alejandro Toledo and Alan Garcia have been much maligned but the outgoing president has turned over to the new president (on July 28, 2011) an enviable economic record and a strong financial position.

There is a confidence in the Peruvian economy as it moves forward buoyed by continued high commodity prices and a wider spreading wealth across all social classes. Many of functionaries have made considerable personal advances on thebasis of the resurging mining economy so it is expected that the new government will be friendly to the mining industry and investment.

A significant benefit of this business plan, apart from the very robust economics, is the opportunity to advance the indigenous mining industry through improving the health and environmental impacts as well as obtaining a higher recovery of gold from the mined rock returning a greater economic benefit to the mineral owners the people of Peru. PTT has commitment letters for 450 tonnes per day of mineral production from two legitimate, small scale miners and as it expands production beyond this, its policies will have beneficial impacts as follows;

Informal and small miners in Peru currently do not have the financial capacity to install modern, large capacity plants. As a result, the mine producers crush the ore in stone grinding mills called quimbaletes and then agglomerate the gold in the crushed material with natural mercury. Not only is the process very labour intensive with low productivity, it also leads to significant health problems. In order to release the gold from the mercury amalgam, the material is heated on open fires to boil off the mercury creating a mercury poisoning risk for anyone nearby including children. The mercury vapour eventually cools and condenses on the ground to create an ongoing health hazard.

As described above the uncontrolled use of mercury and sodium cyanide often lead to issues of significant environmental degradation. The gold mining regions of Peru are noted for the deep blue staining in areas where ore is leached in cyanide baths that are developed without due regard for the environment. The baths are rarely lined with geomembrane to prevent the liquid toxins from moving out into the rock and eventually into the nearby water courses. To argue that many of these areas are in arid zones with no natural vegetation or water courses does not obviate the fact that environmental destruction occurs when toxic materials are allowed to accumulate in surface soils.

All subsurface materials are owned by the people of Peru under the trusteeship of the Peruvian government and any practices which do not optimize the recovery of wealth from these subsurface materials denies thepeople of Peru their rightful share of this wealth. The antiquated processing methods described above rarely recover more than 35% to 40% of the gold from the ore material. Modern plant recovery techniques can often recover more than 90% of this same gold returning a higher value to the people of Peru.

The current state of informal mining in Peru is somewhat chaotic and in many cases, informals are, in effect, stealing ore from the concession owners who are powerless to stop them. PTT will not purchase ore from informal miners who do not have a rightful claim to the ore they are selling and will go further in attempting to bring some order to the regions in which it works by;

Thus PTT will permit informal and small scale miners to earn much greater returns on their labour (through higher recoveries of gold) with much less effort. Modern plants, built to the exacting environmental standards of the Peruvian Ministry of Energy and Mines using state of the art gold processing technologies will result in an improved environment and fewer health risks to the miners. Perhaps as important, the social chaos which characterizes many gold mining areas of Peru will become more orderly as concession owners are paid a return (royalty) on the gold mined from their concessions.

The Nazca-Ocona Gold Belt is 350 km long and 40 km wide covering portions of three Departments; Ayacucho, Ica and Arequipa. It is typified by narrow, gold bearing quartz veins, which are formed in hypothermal to mesothermal environments. The mineralized structures are found in andesitic volcanic rocks and in the intrusives of the Andean Batholith. Veins found to crosscut granodiorite and diorite, tonalite or andesite often contain higher gold grades in the diorite, tonalite or andesite than in granodiorite. The mineralization is known locally as rosario formations due to the fact that the veins tend to narrow and widen in a regular pattern much like the beads on a rosary.

The mining activity that has developed in the Nasca-Ocona belt has largely been by artesanal methods although there are some more modern mines in the area. There exist also mining formal activities of iron and copper.

Artesanal mining is characterized by its labor intensity and lack of modern mining equipment. As a result, the miners develop lodes or veins of narrow thickness but high grade Au. The veins range in width from 30 centimeters to 1.5 meters. In some exceptional circumstances they reach up to 2 m wide. The concentrations of Au range from 15 to 150 grams per tonne (gpt).

The artesanal miners selectively extract from the lode and veins using a technique called the circado. This is essentially a resuing method whereby an opening large enough for a person to work is made alongside the vein and the ore is then slashed off the wall. This reduces dilution and the ore is removed from the opening in small canister with as much as 1.6 grams of gold per 45 kilogram canister (35 grams per tonne). The treatment of the mineral begins with the pallaqueo, or hand sorting to selectively upgrade the ore before being processed or sold.

The mineral extracted from high grade (> 2 grams gold (Au) / canister), is crushed and processed directly in a quimbaletes or manually operated, wetted grinding stones at a rhythm of 30 minutes per canister. While no formal reporting is done it is believed that the gold production in lca and Arequipa is 9 tonnes of dore annually.

Cyanide is sometimes used to extract the gold and the dissolved gold is recovered using activated charcoal. Typically the tails of the quimbaletes process contains important quantities of gold that can be recovered only by cyanide. The grade of the tailings ranges between 12.8 and 25.6 gpt and contains considerable quantities of mercury (introduced from mercury amalgam processes) which end up in the cyanidation tails.

The map shown above comes from information taken from the Ministry of Energy and Mines (MEM) and includes 68 artesanal mining locations. The MEM database includes a total of 270 locations and even this is known to understate the actual number of small mining operations.

It is believed that less than one third of the mines are registered, or included in the reports of MEM. Therefore, the total material that is mined and treated is unknown. It is known, however, that the amount of informal mining activity has increased with the increasing gold price. This increases the mining potential of the zone.

Small mining in Peru is divided by MEM into two categories: traditional and artesanal. Not only is artesanal mining labour intensive with only rudimentary equipment, it is, also in general, an informal activity. Traditional mining makes use of mechanical technologies and is formally registered with the government following norms of labor relations, safety and mining hygiene, environmental requirements, the payment of taxes and reporting to the MEM. According to the statistics of the MEM, the artesanal mining contributes 14 % of the entire gold production of Peru. Half of the national exports come from the mining and from 1998 the gold is the principal product of national exportation.

The geography of Peru is such that the coastal plain is entirely desert except in those areas in which rivers run westward out of the Andean highlands. The entire coast then is truncated every 100 kilometers or so by irrigated arid lands stretching a kilometer or two on either side of the river. The mining activities which are of interest to this report take place within the mountain barrier and usually at elevations below 3500 meters above sea level (masl). While the straight line distances from these mines to the coast are not large (less than 100 km) the steep nature of the terrain makes transportation of the mineral quite difficult and expensive.

This business plan proposes to locate the plant approximately 30 kilometers south of the city of Nazca at a distance of 500 meters along the PanAmerican Highway. The next step in development will be to apply for additional mining leases, purchase the mineral and surface rights to the plant site location and convert the lease underlying the plant to a beneficiation plant lease.

Infrastructure for the plant is excellent with water available from either a well on-site (50 meters) or via pipeline approximately 5 kilometers away. Construction to bring electrical power to within 2 kilometers of the site is underway and is currently 7 kilometers from the plant location.

A local metallurgical laboratory has completed 3 cyanidation tests to determine the optimum dosage of cyanide to recover the gold in ore from the Nazca-Ocona gold belt. The composite ore sample used had a head grade of 19 grams per tonne and the ore was leached for 48 hours with intermediate samples taken to determine the rate of gold dissolution. The results of this work are shown on Figure 4 below.

It is important to note that PTT intends to use the latest gold processing technology to ensure that all Peruvian regulatory requirements are met or exceeded. None of the technology to be used is experimental and all of the equipment required can be readily manufactured in a number of fabrication shops in Peru.

This test work forms the basis for the operating cost estimate and a preliminary flowsheet as discussed below. Based on other plant experience with this material and the preliminary bench scale testing that was done it was determined that a simple cyanidation plant would recover between 92 and 95 percent of the gold from the ore.

PTT obtained a 50 kilogram sample of ores from the Nazca-Ocona area and retained the private laboratory of TECSUP to undertake 3 cyanidation leach tests at different cyanide dosages. The report from this laboratory work is included in Appendix 1 to this document.

The grade of the 50 kilogram sample was 18.7 gpt of gold and the sample was pulverized to an 80 percent passing 200 mesh size consist for the testing. The three cyanide dosages used 0.5, 1.0 and 2.0 grams per liter and the consumption of cyanide after 48 hours was 3.06, 3.58 and 3.61 kilograms per tonne. If the material is leached for only 24 hours the recovery is essentially complete and the

consumption of sodium cyanide drops to 2.5 kilograms per tonne. The three samples were placed in a glass container and agitated for 48 hours. Twenty milliliter samples of the liquid phase were extracted periodically as shown to determine the rate of extraction and identify the optimal concentration of sodium cyanide. The results of the analysis are shown on the graph in Figure 4 below.

The standard process for this plant is shown on the preliminary flowsheet on Figure 5. The list of equipment is shown on Table 3. Ore will be brought by the miners to the plant in small trucks with an average size of 10 tonne lots and the material will be dumped on a compacted patio in a segregated bay. The material will be sampled and analyzed for gold grade, impurities and moisture allowing a fair assessment to be made of its value. The owner of the material will be paid on the basis of the analytical results. The method of payment is discussed below.

From the patio, the ore will be fed by small loader over a scalping grizzly and into a 60 tonne feed bin which discharges onto a screen. The screen oversize passes into a jaw crusher and the undersize passes by conveyor to a second screen. The discharge from the jaw crusher passes onto the same conveyor and also across the second screen. The oversize from the second screen goes to a cone crusher and the undersize passes by conveyor to a 150 tonne fine ore bin. Based on the granulometry of the material tested, less than 25 percent of the ore will need to be crushed.

The fine ore is taken from the bin via conveyor and discharged into a 7 foot by 7 foot ball mill. Water, lime and cyanide are added at this point. The ball mill discharge is pumped to a hydrocyclone with the underflow going back to the ball mill and the overflow feeding a 5 foot by 5 foot ball mill. The discharge from this ball mill is also sent to a hydrocyclone with the underflow going back to the ball mill and the overflow going to the first of four, agitated leach tanks.

The leach tanks work in series and by the time the solids pass through the fourth tank the gold has been leached from the fine solids. The slurry then passes into the first of three carbon-in-pulp tanks where fine carbon particles move in counter current with the slurry to absorb the gold laden cyanide solution. The slurry is pumped from the bottom of the third tank and sent to a standard tailings facility and the liquid phase is sent to the first of three desorption tanks.

The gold laden carbon is washed with stripping solution to remove the gold from the carbon and this solution is then sent to a small electrolytic cell where the gold particles are plated onto a gold cathode. The cathodes are periodically taken to a furnace and melted to make ingots of dore bullion. The carbon is washed with hydrochloric acid to regenerate its adsorption qualities and then sent to a rotary kiln to be reactivated and reused in the process. The sintered carbon is passed across a double deck screen to remove fine particles generated in the process. The fine

carbon which is removed will be stored for subsequent burning to capture any residual gold particles. The first step in the project process following financing will be to do more extensive metallurgical testing to finalize the process flowsheet and estimate an accurate mass balance. It is anticipated that several cost savings will be made at this point. For example the gold ore from the Nazca area is very highlyoxidized and is delivered to the area plants with few rocks larger than 6 inches in size. It is not considered likely that much crushing will be required. Also the sizing of the ball mills will be more accurate and it is likely that smaller equipment will be used. The rapid reaction kinetics may allow for fewer tanks to be used. It is considered that the flowsheet presented in this business plan is conservative. The detailed design to be done post-financing will result in a target cost estimate and construction drawings.

The net result is a capital estimate accurate to within plus or minus 15 percent. Added to the installed equipment capital cost will be working capital to maintain an owners team during design and construction and to pre-purchase a one week supply of ore. The capital cost estimate quotation is included in Appendix 2 to this Business Plan.

Discussions have been held with a reputable Peruvian engineering company with extensive experience in building this size and type of plant. Basic contract terms have been agreed upon pending financing. Their preliminary cost estimate to build the plant on a turnkey basis was less than this constructors estimate.

Security is an issue whenever there exists a small object of high value such as a brick of dore bullion. Security will be built into the plant design by surrounding the facility with a fence or wall and putting the final processing equipment into securedbuilding. Workers will be required to wear company clothing and change and shower on site. Special traps will be built into all effluent discharges and private security will protect the plant.

The removal of gold bricks will be done under contract with one of the international, bonded security companies that operate in Peru and they will take custody of the gold at the plant site. There is a small asphalt airstrip at Nazca and flying the gold from this nearby town will be investigated. Plant security will be fully addressed in the detailed design stage following financing.

The plant operating cost estimate is developed from the power cost and reagent costs which are the largest cost items. Power requirement is determined by the horsepower requirements of the plant equipment and it is assumed that all power will be from the national power grid at a cost of US$0.10 per kwhr. A backup generator will be available in the event of power outages which are frequent in this part of the country. The plant operating cost estimate is shown on Table 5 below;

This manpower schedule assumes two, 12 hour shifts per day for 365 days per year requiring 3 shifts of personnel. The plant availability is assumed to be 95 percent resulting in 346 effective operating days per year. The labour cost shown in the operating cost estimate is based on this labour schedule assuming that qualified labour is paid $600 per month and tradespeople are paid $630 per month. The payroll burden is assumed to be 30 percent additional to the payment of 15 salaries in every 12 month period. Additionally a 6 percent profit sharing bonus is paid. The manpower complement at the plant is 21 operators, 8 technician/tradesmen, 3 shift supervisors, the plant metallurgist and the Operations Manager.

The Peruvian fiscal regime is well understood and has been in place for the past 12 years. The recent election assures another 5 years of political peace and the ruling Aprista party is pro-mining and is not considering significant changes to this tax regime. It is emphasized that PTT will follow all Peruvian laws with respect to the paying of all tributes and taxes including payroll taxes and profit sharing and this is reflected in the cash flow model used in this Business Plan.

Income taxes are a flat 30 percent of resource revenue and most capital expenses are amortized straight line over a 10 year useful life. The lack of accelerated write-offs has been a topic of conversation between the mining industry and the government for some time but with commodity prices at high levels it is not considered likely that any changes will be instituted at this time.

The development schedule is shown on Figure 6 below. When the project has been financed there will be a one month design phase to confirm that the flowsheet is appropriate for the project. Fifty kilograms of ore will be obtained from the operations which have signed letters of intent for this purpose.

Discussions have already taken place with a local engineering company which has the competency for this project and they have expressed, in writing, their interest in providing a lump sum bid to engineer, purchase and construct the plant. Engineering of the plant will commence as soon as the design of the flowsheet is known in sufficient detail to start sizing the equipment. As previously stated, as much as possible, the plant will be built in modules which can be easily transported to the site and quickly interconnected. Plant engineering and purchasing is anticipated to take only 2 months as many of the contractors already have construction drawings for the equipment to be installed.

As soon as the equipment list is ready, orders will be placed for the components which will all be available locally. As each plant module is designed fabrication will commence. It is anticipated that construction of the plant will require 4 months.

All necessary permits will be applied for immediately following financing. These will include construction permits, water licenses and operating permits. A local consultant with specialized skills will be hired to write the necessary permitting documents and that the whole process will take from 3 to 5 months.

The cash flow results are shown in Appendix 4 to this report and summarize the costs and revenues for a 10 year project life. The table shown assumes a gold price of US$1500 per ounce and a gradually increasing gold feed grade.

The revenue formula for the plant is based on two items; 1. A plant charge per tonne of throughput based on gold price. 2. A recovered gold payable equal to 90% of the total plant recovery. The company retains any gold recovery above 90%. 3. A marketing fee of US$20 per tonne.

When the gold ore is brought to the plant it will be evaluated and a purchase price assessed based on the average gold price of the previous 7 trading days, the ore grade and moisture content and the plant revenue factors identified above.

The processing charge was calculated from an understanding of the process charges for the major competitor to PTT. While not wanting to upset the current pricing regime, PTT will be at or below the competition at any given gold price. Note that this calculation is based on pricing at a time when the gold price was $450 per ounce. It has moved up since this time and the economics presented are based on an increase of $20 in the process charges shown below. The deviation from our competition widens as the gold price increases as shown in Figure 7 below. For clarity, this figure shows the amount paid to the sellers of the ore and is not the amount paid to the plant.

The processing fee floor value was determined from a supply cost analysis at a gold price of US$300 per ounce and a grade of 10 grams per tonne. It was determined that a charge of US$54 per tonne of ore is required to obtain a 25% rate of return on the project (at a gold price of US$300 per ounce). Based on this analysis, the processing charge is calculated according the following formula;

The operating cost has been described above and the cash flow analysis uses this cost with an additional 4% for marketing and head office administration. As gold prices have topped $1500 per ounce and additional $20 per tonne was added to this processing charge.

Two written expressions of interest have been received from concession owners who have mines currently not operating. PTT have visited the Erika mine and confirm that it is capable of producing 350 tonnes per day of gold mineralization. The total production being offered by the two formal mining companies is 450 tonnes per day.

Taxes and royalties are as described above. The capital cost allowance for all capital requirements is assumed to be a 10 percent, straight line deduction for 10 years (the assumed life of this project).

The net cash flows are then calculated as shown in the Appendix and, for this base case production scenario, the project net present value at a 10 percent discount rate is $22,000,000, the rate of return is over 200% and the payback period is 1.1 years. Figure 8 indicates the expected net present values at varying discount rates for the base case cost and revenue assumptions.

A sensitivity analysis for the project has been undertaken as shown on the spider diagram in Figure 9. The input values of gold price, operating cost and capital cost have been varied in 25% increments from 25% of base case to 175% of base case values. The slope of the criterion lines indicates how sensitive the project economics are to changes in these criterion the steeper the line the more sensitive the project economics are to that variable.

It can be seen from this sensitivity analysis that the project is extremely robust and is largely indifferent to capital cost nor very sensitive to gold price as most of the plant revenue comes from the processing charge.

The technology for winning gold from these types of ores is well understood and there are other much older and quite dilapidated plants operating successfully in the area. It can be seen from the economic sensitivity analysis that the project remains economic even with significant changes in capital and operating costs. When capital and operating costs are at 175% of the base case ($4,200,000 and $58.00 per tonne) and the ore grade and gold price are at 50% of the base case values (10 grams per tonne and $325 per ounce) the project will have an NPV10 of $3,682,000.

As stated previously, 14% of all the reported gold produced in Peru comes from small scale and informal miners. With high gold prices there are literally thousands of small miners operating in the area of interest and there is not enough plant capacity for them. Currently, a miners cooperative is being created to subsequently sign an agreement with the writers of this Business Plan.

The plant will not compete on the basis of pricing but rather on the honesty of its operation. The small miners will be given full value for their ore as determined by a third party, internationally recognized laboratory which is not currently the case. As well the plant site is located within 1 kilometer of the main Peruvian highway while the competitors plant is located approximately 2 hours from the highway along a difficult, narrow gravel road. The plant location will guarantee a continuous supply of feed stock.

Plant management has been chosen with great care and special attention will be taken to hire only qualified and reputable people. The company will also contract the services of a reputable firm to periodically audit the operations for shrinkage.

The new regime in Peru has announced that it is committed to maintaining a pro-mining position while directing additional social development funds to the outlying regions of the country. Recently the government announced that informal miners must follow the same environmental guidelines of formalized mining companies. The best insurance against fall-out from such political instability is to maintain a very lowbusiness and community profile. This area of Peru is also known for being relatively peaceful and stable thanks to the self-organizing activities of the informal miners. While they do not operate under the aegis of Peruvian mining codes and laws they do an excellent job of protecting their own interests. The World Bank has specific programs to reduce the use of mercury in artesanal gold operations and will be supportive of this plant.

The signing of free trade agreements with Canada and the United States will do a great deal to normalize Peruvian business conditions in order that they are aligned with North American practices thus stabilizing the business climate.

using ball mills to extract raw gold from ores

Placer mining and lode mining are very different. Whereas placer gold has been released from within the rock and is generally free from any significant matrix, lode gold presents different challenges. While gold may be present in ore, it must somehow be released for proper extraction.

As a result, a number of machines have been invented to bring about maximum results with regard to obtaining the much needed resource, gold. One of such equipment is the ball mill. Below is the write-up of how a ball mill works, is used to crush ore and an explanation regarding its effectiveness in gold mining.

First of all, in order to get the best out of how this particular equipment is used it is important to get acquainted with knowledge on what it is, and is made of. Hence, a mill is a piece of equipment used to grind ores. Its major purpose is to perform the grinding and blending of rocks and ores to release any free-gold that is contained within them.

At major mines, the mill was the critical equipment that was required to process the ores that were extracted from deep underground. Many early mines used stamp mills, but many operations today find that ball mills are more functional for smaller operations and perform well with the modern equipment we have available now such as combustion engines.

To perform its functions, the ball mill operates on the principle of impact and attrition. This principle entails that the balls are dropped from near the top of the shell in order to bring about size reduction impact.

The major components of the ball mill include a shell that is hollow and is suspended on its axis to bring about rotation. The axis of the shell can be suspended horizontally or at an angle to the horizontal.

The shell is filled with quite few, but reasonable amount of balls which do the grinding process, and can be made of steel such as chrome steel and stainless steel. They can also be made of ceramic or rubber depending on their targeted material to be ground.

Its major operations are categorized into two, namely the dry and wet processes. Through those processes the machine is able to perform its functions of grinding the crushed materials. One of such functions, is that which is witnessed when grinding different types of ore, such as gold ore.

Now here is what one must know with regard to how the ball mill operates. The drum of the mill (shell) is suspended on two self-aligned rollers. Then the material to be worked on is loaded through the hopper.

From there, the mill is driven using a motor with a clutch, gearbox and the flexible coupling. The mill is then lifted to a certain level of height as it rotates. It is from that height that the balls begin to freely fall or roll down in order to grind the material that has been loaded.

After the material is ground, it is then removed from the mill depending on the discharge method used on the machine. For example, there are center unloading mills as well as unloading through the grille mills.

For the center unloading mills, the ground material is discharged through a hollow unloading trunnion using a free sink. To make it more efficient the pulp level in the drum should at least be above the level of the lower generating trunnion for unloading.

On the other hand, mills whose unloading is done using the grid consist of a lifting device which helps to unload the crushed material. For this reason, in such a mill the slurry level is likely to be lower compared to the unlading trunnion level. In such a mill, a grid with openings used for unloading crushed material is located in the unloading end of the drum.

To crush the gold ore in order to obtain pure gold, the large ore of gold is fed into a jaw crusher or mobile jaw crusher for the primary crushing process. The crushing process acts as a medium of screening the fine gold ore. It is then sieved using the vibrating screen and later sent through the use of a conveyer belt.

The ore is sent into a single-cylinder hydraulic cone crusher for the secondary crushing. Thereafter, the gold ore is transferred to a multi-cylinder hydraulic cone crusher, where the ore is crushed further into finer material. From there, the crushed gold ore is sent to a ball mill, evenly as it passes through a vibrating screen for grinding.

From the ball mill, the gold ore powder is subjected to the process known as beneficiation for further crushing before classification and floatation processes. Most commonly, professional mining operations will use a shaker table at this point. These are extremely effective at capturing tiny particles of free-gold that has been released from the ores.

gold processing,extraction,smelting plant design, equipment for sale | prominer (shanghai) mining technology co.,ltd

Prominer maintains a team of senior gold processing engineers with expertise and global experience. These gold professionals are specifically in gold processing through various beneficiation technologies, for gold ore of different characteristics, such as flotation, cyanide leaching, gravity separation, etc., to achieve the processing plant of optimal and cost-efficient process designs.

Based on abundant experiences on gold mining project, Prominer helps clients to get higher yield & recovery rate with lower running cost and pays more attention on environmental protection. Prominer supplies customized solution for different types of gold ore. General processing technologies for gold ore are summarized as below:

For alluvial gold, also called sand gold, gravel gold, placer gold or river gold, gravity separation is suitable. This type of gold contains mainly free gold blended with the sand. Under this circumstance, the technology is to wash away the mud and sieve out the big size stone first with the trommel screen, and then using centrifugal concentrator, shaking table as well as gold carpet to separate the free gold from the stone sands.

CIL is mainly for processing the oxide type gold ore if the recovery rate is not high or much gold is still left by using otation and/ or gravity circuits. Slurry, containing uncovered gold from primary circuits, is pumped directly to the thickener to adjust the slurry density. Then it is pumped to leaching plant and dissolved in aerated sodium cyanide solution. The solubilized gold is simultaneously adsorbed directly into coarse granules of activated carbon, and it is called Carbon-In-Leaching process (CIL).

Heap leaching is always the first choice to process low grade ore easy to leaching. Based on the leaching test, the gold ore will be crushed to the determined particle size and then sent to the dump area. If the content of clay and solid is high, to improve the leaching efficiency, the agglomeration shall be considered. By using the cement, lime and cyanide solution, the small particles would be stuck to big lumps. It makes the cyanide solution much easier penetrating and heap more stable. After sufficient leaching, the pregnant solution will be pumped to the carbon adsorption column for catching the free gold. The barren liquid will be pumped to the cyanide solution pond for recycle usage.

The loaded carbon is treated at high temperature to elute the adsorbed gold into the solution once again. The gold-rich eluate is fed into an electrowinning circuit where gold and other metals are plated onto cathodes of steel wool. The loaded steel wool is pretreated by calcination before mixing with uxes and melting. Finally, the melt is poured into a cascade of molds where gold is separated from the slag to gold bullion.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.

ball mill for sale | grinding machine - jxsc mining

Ball mill is the key equipment for grinding materials. those grinding mills are widely used in the mining process, and it has a wide range of usage in grinding mineral or material into fine powder, such as gold, ironzinc ore, copper, etc.

JXSC Mining produce reliable effective ball mill for long life and minimum maintenance, incorporate many of the qualities which have made us being professional in the mineral processing industry since 1985. Various types of ball mill designs are available to suit different applications. These could include but not be restricted to coal mining grate discharge, dry type grinding, wet mineral grinding, high-temperature milling operations, stone & pebble milling.

A ball mill grinds ores to an end product size of thirty-five mesh or finer. The feeding material to a ball mill is treated by: Single or multistage crushing and screening Crushing, screening, and/or rod milling Primary crushing and autogenous/semi-autogenous grinding.

Normal feed sizes: eighty percent of six millimeters or finer for hard rocker eighty percent of twenty-five millimeters or finer for fragile rocks (Larger feed sizes can be tolerated depending on the requirements).

The ratio of machine length to the cylinder diameter of cylindrical type ball mills range from one to three through three to one. When the length to diameter ratio is two to one or even bigger, we should better choose the mill of a Tube Mill.

Grinding circuit design Grinding circuit design is available, we experienced engineers expect the chance to help you with ore material grinding mill plant of grinding circuit design, installation, operation, and optimization. The automatic operation has the advantage of saving energy consumption, grinding media, and reducing body liner wear while increasing grinding capacity. In addition, by using a software system to control the ore grinding process meet the requirements of different ore milling task.

The ball mill is a typical material grinder machine which widely used in the mineral processing plant, ball mill performs well in different material conditions either wet type grinding or dry type, and to grind the ores to a fine size.

Main ball mill components: cylinder, motor drive, grinding medium, shaft. The cylinder cavity is partial filling with the material to be ground and the metal grinding balls. When the large cylinder rotating and creating centrifugal force, the inner metal grinding mediums will be lifted to the predetermined height and then fall, the rock material will be ground under the gravity force and squeeze force of moving mediums. Feed material to be ground enters the cylinder through a hopper feeder on one end and after being crushed by the grinding medium is discharged at the other end.

Mining Equipment Manufacturers, Our Main Products: Gold Trommel, Gold Wash Plant, Dense Media Separation System, CIP, CIL, Ball Mill, Trommel Scrubber, Shaker Table, Jig Concentrator, Spiral Separator, Slurry Pump, Trommel Screen.

multotec | mineral processing

For over 45 years, weve been driven by one primary goal: helping customers get more from their ore. We partner with our clients to drive continuous process optimisation to their plant with application-specific mineral processing solutions that:

For over 45 years, weve helped the worlds biggest mining houses maximise process efficiency and plant uptime, increase levels of product quality, consistency and reliability, and enhance product speed to market.

Multotec is active across the world. Through our global presence, we deliver local expertise, with engineered solutions and services tailored to the unique mineral processing requirements of each region.