ball mill overflow

cylinder energy-saving overflow ball mill, ball milling process , ball mill operation, ball mill equipment - xinhai

The main component is a cylinder with diameter and length at a reasonable proportion. Driven by the transmission device, the cylinder rotates with the materials fed from the cylinder inlet and crushed by the falling impacts and autogenous grinding of the steel balls and ores in the cylinder. Due to the continuously feeding materials, the pressure pushes materials to the outlet and the grinded materials are discharged from the cylinder outlet. Qualified materials flow from the cylinder outlet. In wet grinding, the materials are taken out by the water flow. There are backpitch impellers in the hollow shaft, which can make the balls and coarse ores in the overflow return to the mill. With a simple structure, higher operation rate, and rolling bearing, the energy conservation is significant.

overflow vs grate discharge ball or mill - why retrofit

Allow metocompare:Ball mills can be of the overflow or of the grate discharge type. Overflow discharge mills are used when a product with high specific surface is wanted, without any respect to the particle size distribution curve. Overflow discharge mills give a final product in an open circuit.

Grate discharge mills are used when the grinding energy shall be concentrated to the coarse particles without production of slimes. In order to get a steep particle size distribution curve, the mill is used in closed circuit with some kind of classifier and the coarse particles-known as classifier underflow-are recycled.

In the past, I had worked with +10% as an expected increase created by the conversion. How much capacity you gain by using grate discharge over overflow discharge on a mill =The +20% data comes from an old paper.

BallMills have a very large discharge opening or area and smaller area for incoming feed. The gradient between the incoming feed opening and the discharge near the periphery of the shell provides a faster migration of the fines than the oversize particles. In deep pulp level mills commonly known as overflow mills this migration can not occur since material enters and leaves at the same level by displacement only. Independent tests have shown that regardless of mill shape or design, the discharge product of an overflow mill will be the same no matter at which end the feed enters.

Grate Discharge Ball mills withlow pulp levels benefit from the full impact of the grinding media acting on the ore particles, as it falls into the shallow pulp. With a deep pulp level the grinding media is cushioned in the pulp, thus losing its energy and reducing its grinding ability. Grate Discharge Ball Mills have shown 25% to 45% more tonnage ground and a substantial reduction in power consumed per ton of material compared size for size with overflow mills.

A general statement can be made that the closer the discharge is to the periphery of the shell, the quicker the material will pass through and less overgrinding will take place. This is important in both rod mill and ball mill grinding. First, regardless of how fine a grind is required, overgrinding is costly and undesirable. The ideal condition is to remove the particles as soon as they have reached the optimum size. Secondly, in grinding applications where a minimum amount of fine material is preferred, again a rapid flow through the grinding mill is required. These can be accomplished with the grate for ball mill operations, or the various Grate Discharge discharge arrangements for the rod mill.

The discharge end of the conventional Open End Rod Mill is virtually open as the name implies. As a means of controlling splash and to prevent unruly rods from moving out of the mill a discharge plug or plug door arrangement is furnished. The use of this construction permits pulp to discharge freely around the annular opening between the plug and the discharge trunnion liner. By simple removal of the plug the full large area of the discharge end may be used for re-rodding, inspection of the mill when in operation, and an easy access to the mill interior for relining. This large opening does away with the necessity of manholes for mill entrance as commonly employed in the overflow type mill. The plug door arrangement is a great time saver during re-rodding and re-lining operations.

On smaller diameter Grate Discharge Rod Mills a discharge plug is furnished mounted on the trunnion liner and extending through to line up with the discharge head liners. The larger diameter Grate Discharge Mills are furnished with a discharge housing arrangement independent of the mill. A hinged door is mounted in this housing and easily swings in or out of the discharge trunnion liner. These housings are also used to control the direction of discharge pulp flow leaving the mill. Such flow may be directed to the left, right, or directly below the mill centerline.

The discharge housing is of very heavy construction for strength and rigidly. Maintenance of this housing is kept at a minimum, the only wearing part being the replaceable Manganese Steel plug door liner.

The discharge end of a Grate Discharge Ball Mill is fitted with grate sections approximately 3 thick, made of special heat treated alloy steel developed for this particular application. The grate sections have tapered openings between and 7/8 dependent upon the specific grinding application. These are selected to provide the greatest efficiency for any particular job. The grate sections are held in place by tapered Manganese Steel side clamp bars, a center discharge liner, and end clamp bars. The discharge grates are very simple to install and require no attention during operation. The overall life of the discharge end parts generally is greater than that of the feed head liners or shell liners. The discharge end of the Grate Discharge Ball Mill has at least ten times the discharge opening area, through the grate slots, compared to the common trunnion overflow type mill. The discharge grates are designed to run clean and free of any blinding or choking. The pulp level in the mill may be varied by merely changing the pulp dilution. There is no complicated mechanical arrangement to compensate for pulp level changes. The side clamp bars and center discharge liner besides holding the grate sections in place, act as a means of stirring up the ball charge and reduces the amount of wear on the grate sections. The pulp discharges through the grate slots into a lifter compartment in the discharge head, lined with replaceable wearing parts. This lifting compartment elevates the discharge pulp up to the level of the discharge trunnion liner opening and spills this against a deflecting cone which directs it out through the trunnion liner.

The above is a Grate Discharge Mill head with discharge grates, side clamp bars, end damp bars, and center discharge liners in place. The grates and side clamp bars are accurately ground to fit the machined surfaces of the discharge head lifters.

We have already discussed grinding in a general way and have referred numerous times to the grate dischargeprinciple of grinding. To illustrate roughly this principle, take a certain weight of crushed ore and grind it with a mortar and pestle until all of the ore particles will pass through a 65-mesh screen. Then take a similar sample but this time grind for a few minutes and screen at 65-mesh removing the finished material, then return the oversize particles and grind for another short period of time and repeat the screening operation. You would find that the actual net grinding time required for the second sample is about half the time required under the first condition. This same process takes place in the Grate Discharge Ball Mill. It must be borne in mind that it is the classifier which determines the size of the finished product, not the grinding mill itself. The Grate Discharge Mill permits a quick discharge of the finished material into the classifier which makes the desired mesh size separation and returns the oversize particles to the mill for another pass.Contrary to the usual belief, material does not discharge through the grates at the bottom. In fact it is carried up in the ball load so that the greater portion passes out from the ball load on the upturning side of the mill, in the grate area from about half way below the centerline of the mill, on up to the point where the balls start to leave the shell on their downward paths. This indicates then that the thick pulp carried in the mill is well within the ball mass where the actual grinding is taking place. The discharge grates are not to control the size of particle discharged, but merely to retain the grinding balls within the mill, provide the full discharge area required, and form the steep gradient between the feed entrance and product discharge.

To illustrate the comparison of the grate discharge Ball Mill to an overflow type of mill we are showing on page 31 several actual case histories of installations where the performance of grate discharge mills versus overflow mills have been proven. In each such test, run for long periods of time, the ore characteristics and size of feed were maintained identical so that the tests could be compared under like conditions. It will be noted that in each case the grate discharge Mill provided a high increase in tonnage with a lesser increase in power consumption so that the actual KWH per ton consumed was reduced. From these field examples you can verify the previous statement that an overflow type of mill has somewhere near 70% the capacity of the grate mill. These tests were conducted independently by the actual operating companies involved.

The above tables list some of the most common Grate Discharge Ball Mill sizes. Capacities are based on medium hard ore with mill operating in closed circuit under wet grinding conditions at speeds indicated. For dry grinding, speeds are reduced and capacities drop between 30% to 50% .

The above dimensions are approximate and for preliminary use only. Right hand mills are shown. For left hand mills put drive on opposite side. Drive may also be located at feed end. but clearance of scoop must be considered.

The above dimensions are approximate and for preliminary use only. Right hand mills are shown. For left hand mills put drive on opposite side. Drive may also be located at feed end, but clearance of scoop must be considered.

overflow ball mill - crushers, ball mills and flotation cells for mining and mineral beneficiation

ZJH mainly focus on producing and supply crushers, ore grinding equipment, mineral Beneficiation equipment, laboratory and pilot scale ore dressing equipment for Mining and Mineral Processing Industry. Our aim is to work together with Mines, Mineral Beneficiation Plantsfor helping to reduce the operating cost ,to improve the operating efficiency.

overflow ball mill, ball milling method, principle of ball mill - xinhai

[Improvement]: Overflow type ball mill is equipped with slow transmission system. When the ball mill starts, the low-speed slow transmission runs first, and the high-speed main motor drive system runs later, which not only saves energy, but also reduces the impact on the ball mill equipment and the grid system.

Principle of theoverflow ball mill: the main component is a cylinder with diameter and length at a reasonable proportion. Driven by the transmission device, the cylinder rotates with the materials fed from the cylinder inlet and crushed by the falling impacts and autogenous grinding of the steel balls and ores in the cylinder. Due to the continuously feeding materials, the pressure pushes materials to the outlet and the grinded materials are discharged from the cylinder outlet. Qualified materials flow from the cylinder outlet. In wet grinding, the materials are taken out by the water flow. There are backpitch impellers in the hollow shaft, which can make the balls and coarse ores in the overflow return to the mill. With a simple structure, higher operation rate, and rolling bearing, the energy conservation is significant.

l / d ratio in overflow ball mill design & operation

Ball mill shape factors in the period prior to 1927 averaged 1.1/1 for 29 center discharge mills and 1.0/1 for 30 peripheral discharge mills. With the resumption of new plant construction after the 1930s depression, the Morenci concentrator continued the 1/1 ratio with its 3.1 x 3.1 m (10 x 10 ft) mills. The ratio was increased progressively from then on, reaching 1.6 and 1.8/1 for the largest overflow mills currently.

This is in sharp contrast to autogenous and SAG mill shapes for which the ratio averages 0.4 in North America. On the other hand, South African practice, starting at the turn of the century with autogenous mills having 4/1 ratios, moved toward 1/1 until recently, when a 2.5/1 ratio mill was installed.

The reasons given for such divergent practice for mill shape factors are in some respects contradictory, and generally inconclusive. The most complete discussion from a practical viewpoint is limited to primary SAG and autogenous mills. Considerations of ball mill dimensionality have had a two-fold direction. On the one hand, it has been argued that ball mill efficiencies should increase with increasing diameter, and that the specific energy for a particular grind should be reduced accordingly. An inadvertent test of this at the Bougainville operation resulted in drastic under-powering, which led to failure to reach design capacity until additional mills were installed. This can be taken as strong evidence against any increase in efficiency with diameter.

There is a limit to ball mill diameters because of the demonstrable limit to axial flow velocities evident in the overload phenomenon, which as a fact is incontrovertible. But that it places a limit on mill diameters overlooks the evidence given below that appropriate variation in the L/D ratio will permit major increases in diameter, limited only by constructional or economic factors.

The present study was directed toward quantifying the overload phenomenon through examining the influence of mill dimensionality variation and mill operating variables on its occurrence. It is shown that varying the operating conditions, specifically the load fraction and the fraction critical speed, can reduce the risk of overload for existing operations; while appropriate decreases in the L/D ratio can minimize the risk in the design of new circuits.

Ball mill overload is a consequence of the approach to a critical velocity with increasing feed rates or circulating loads. Although the effect has been known for over 50 years, there have been no previous attempts to quantify it. The following description of the ball mill as a flow system is the preliminary to a quantitative analysis:

ball mill/grate ball mill/overflow type ball mill/rubber lined ball mill--shanghai minggong ball mill machinery

Shanghai Minggong Heavy Equipment Co. Ltd. is founded in 1956 (formerly the Shanghai Daming Iron Works), which is a long history enterprise mainly manufacturing large and medium-sized series of mining machinery, metallurgical machinery, building materials equipment, combining R&D, manufacturing and sales as a whole.

an overfilling indicator for wet overflow ball mills - sciencedirect

An overfilling indicator for wet overflow discharge ball mills.Mathematical descriptions of volume-based slurry residence time in ball mills.121 sets of plant survey data used to establish the slurry residence time patterns.The residence time thresholds as the overfilling indicator defined from the database.

The lack of constraints in ball mill capacity in the published ball mill models may result in unrealistic predictions of mill throughput. This paper presents an overfilling indicator for wet overflow discharge ball mills. The overfilling indicator is based on the slurry residence time in a given mill and given operational conditions. Mathematical descriptions of the method to estimate the volume-based residence time of slurry are presented. A database consisting of 121 sets of industrial overflow ball mill surveys worldwide was used to establish the pattern of the slurry residence time in the full scale operational overflow ball mills. According to the pattern, the residence time thresholds beyond which overfilling a ball mill is likely to occur were defined. For a ball mill with an internal diameter smaller than 5.9m, the volume-based residence time threshold is set at 2min; and for a ball mill larger than 5.9m in diameter, the threshold is set at 1min. In addition to being incorporated in ball mill models to warn of any unrealistic simulations, the overfilling indicator can also be utilised at ball mill operation sites to guide the mill throughput control and optimisation.

combined dem and sph simulation of overflow ball mill discharge and trommel flow - sciencedirect

A coupled slurry-media model of mill discharge and trommel flow is developed.Fluid slurry in the mill lowers charge shoulder and toe due to drag forces.Trunnion spiral effectively returns balls back to the grinding chamber.Trommel baffles improve screening characteristics.DEM+SPH can help improve mill discharge performance and trommel classification.

Discharge of finer rock, pebbles, ball scats and slurry from mills and its flow through trommels and into other processing operations all affect the performance of overflow ball mills. Modelling of the coarser rock components and the grinding media is best done using the Discrete Element Method (DEM) while modelling of the slurry component is best done using a compatible particle method such as SPH (Smoothed Particle Hydrodynamics). This combination of methods allows both these critical components and their interactions to be included in flow models for the mill and discharge arrangements. Information from such models can be used to both understand the flows in these typically closed and data poor environments and to help optimise designs for improved performance and superior wear life. In this paper, a typical discharge/trommel arrangement for an overflow ball mill is analysed using this modelling approach with opportunities for use in process improvement discussed. In the mill grinding chamber the addition of slurry was found to lower the charge shoulder and toe positions due to drag forces on the media, as well as produce a large slurry pool above the toe. Slurry surging out of the grinding chamber carries mill product as well as a small amount of balls through the trunnion and into the trommel for classification. The trunnion spiral was found to be very effective at collecting and returning balls back into the mill grinding chamber. The rate of balls flowing into the trommel was found to be size-dependent favouring the discharge of smaller worn scats for removal as waste. Trommels with and without baffles were compared to establish linkages between transport and classification performance and trommel geometry. The inclusion of baffles inside the trommel was found to spread the slurry sideways and axially and provide improved screening characteristics.

ball mill used in minerals processing plant | prominer (shanghai) mining technology co.,ltd

This ball mill is typically designed to grind mineral ores and other materials with different hardness, and it is widely used in different fields, such as ore dressing, building material field, chemical industry, etc. Due to the difference of its slurry discharging method, it is divided to two types: grid type ball mill and overflow type ball mill.

Compared with grid type ball mill, overflow type ball mill can grind materials finer even though its grinding time is usually longer. So it can make finer particle products. Hence the grid type ball mill is mainly used for primary stage of grinding while overflow type ball mill is mainly used for the secondary grinding.

Ball mill Advantages: 1Jack-up device, easy maintenance; 2The hydrostatic and hydrodynamic bearings ensure the smooth operation; 3Low speed transmission is easy for starting and maintenance; 4The oil-mist lubrication device guarantees reliable performance of bearings; 5The air clutch adopts the flexible start-up model./5According to the customer demand, manganese steel liner and wear-resistant rubber liner can be customized with good wear resistance, long service life and easy maintenance.

The grinding system uses either 'open circuit' or 'closed circuit'. In an open circuit system, the feed rate of materials is adjusted to achieve the desired fineness of the product. In a closed circuit system, coarse particles are separated from the finer ones and sent back for further grinding.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.

ball mills | industry grinder for mineral processing - jxsc machine

Max Feeding size <25mm Discharge size0.075-0.4mm Typesoverflow ball mills, grate discharge ball mills Service 24hrs quotation, custom made parts, processing flow design & optimization, one year warranty, on-site installation.

Ball mill, also known as ball grinding machine, a well-known ore grinding machine, widely used in the mining, construction, aggregate application. JXSC start the ball mill business since 1985, supply globally service includes design, manufacturing, installation, and free operation training. Type according to the discharge type, overflow ball mill, grate discharge ball mill; according to the grinding conditions, wet milling, dry grinding; according to the ball mill media. Wet grinding gold, chrome, tin, coltan, tantalite, silica sand, lead, pebble, and the like mining application. Dry grinding cement, building stone, power, etc. Grinding media ball steel ball, manganese, chrome, ceramic ball, etc. Common steel ball sizes 40mm, 60mm, 80mm, 100mm, 120mm. Ball mill liner Natural rubber plate, manganese steel plate, 50-130mm custom thickness. Features 1. Effective grinding technology for diverse applications 2. Long life and minimum maintenance 3. Automatization 4. Working Continuously 5. Quality guarantee, safe operation, energy-saving. The ball grinding mill machine usually coordinates with other rock crusher machines, like jaw crusher, cone crusher, to reduce the ore particle into fine and superfine size. Ball mills grinding tasks can be done under dry or wet conditions. Get to know more details of rock crushers, ore grinders, contact us!

Ball mill parts feed, discharge, barrel, gear, motor, reducer, bearing, bearing seat, frame, liner plate, steel ball, etc. Contact our overseas office for buying ball mill components, wear parts, and your mine site visits. Ball mill working principle High energy ball milling is a type of powder grinding mill used to grind ores and other materials to 25 mesh or extremely fine powders, mainly used in the mineral processing industry, both in open or closed circuits. Ball milling is a grinding method that reduces the product into a controlled final grind and a uniform size, usually, the manganese, iron, steel balls or ceramic are used in the collision container. The ball milling process prepared by rod mill, sag mill (autogenous / semi autogenous grinding mill), jaw crusher, cone crusher, and other single or multistage crushing and screening. Ball mill manufacturer With more than 35 years of experience in grinding balls mill technology, JXSC design and produce heavy-duty scientific ball mill with long life minimum maintenance among industrial use, laboratory use. Besides, portable ball mills are designed for the mobile mineral processing plant. How much the ball mill, and how much invest a crushing plant? contact us today! Find more ball mill diagram at ball mill PDF ServiceBall mill design, Testing of the material, grinding circuit design, on site installation. The ball grinding mill machine usually coordinates with other rock crusher machines, like jaw crusher, cone crusher, get to know more details of rock crushers, ore grinders, contact us! sag mill vs ball mill, rod mill vs ball mill

How many types of ball mill 1. Based on the axial orientation a. Horizontal ball mill. It is the most common type supplied from ball mill manufacturers in China. Although the capacity, specification, and structure may vary from every supplier, they are basically shaped like a cylinder with a drum inside its chamber. As the name implies, it comes in a longer and thinner shape form that vertical ball mills. Most horizontal ball mills have timers that shut down automatically when the material is fully processed. b. Vertical ball mills are not very commonly used in industries owing to its capacity limitation and specific structure. Vertical roller mill comes in the form of an erect cylinder rather than a horizontal type like a detachable drum, that is the vertical grinding mill only produced base on custom requirements by vertical ball mill manufacturers. 2. Base on the loading capacity Ball mill manufacturers in China design different ball mill sizes to meet the customers from various sectors of the public administration, such as colleges and universities, metallurgical institutes, and mines. a. Industrial ball mills. They are applied in the manufacturing factories, where they need them to grind a huge amount of material into specific particles, and alway interlink with other equipment like feeder, vibrating screen. Such as ball mill for mining, ceramic industry, cement grinding. b. Planetary Ball Mills, small ball mill. They are intended for usage in the testing laboratory, usually come in the form of vertical structure, has a small chamber and small loading capacity. Ball mill for sale In all the ore mining beneficiation and concentrating processes, including gravity separation, chemical, froth flotation, the working principle is to prepare fine size ores by crushing and grinding often with rock crushers, rod mill, and ball mils for the subsequent treatment. Over a period of many years development, the fine grinding fineness have been reduced many times, and the ball mill machine has become the widest used grinding machine in various applications due to solid structure, and low operation cost. The ball miller machine is a tumbling mill that uses steel milling balls as the grinding media, applied in either primary grinding or secondary grinding applications. The feed can be dry or wet, as for dry materials process, the shell dustproof to minimize the dust pollution. Gear drive mill barrel tumbles iron or steel balls with the ore at a speed. Usually, the balls filling rate about 40%, the mill balls size are initially 3080 cm diameter but gradually wore away as the ore was ground. In general, ball mill grinder can be fed either wet or dry, the ball mill machine is classed by electric power rather than diameter and capacity. JXSC ball mill manufacturer has industrial ball mill and small ball mill for sale, power range 18.5-800KW. During the production process, the ball grinding machine may be called cement mill, limestone ball mill, sand mill, coal mill, pebble mill, rotary ball mill, wet grinding mill, etc. JXSC ball mills are designed for high capacity long service, good quality match Metso ball mill. Grinding media Grinding balls for mining usually adopt wet grinding ball mills, mostly manganese, steel, lead balls. Ceramic balls for ball mill often seen in the laboratory. Types of ball mill: wet grinding ball mill, dry grinding ball mill, horizontal ball mill, vibration mill, large ball mill, coal mill, stone mill grinder, tumbling ball mill, etc. The ball mill barrel is filled with powder and milling media, the powder can reduce the balls falling impact, but if the power too much that may cause balls to stick to the container side. Along with the rotational force, the crushing action mill the power, so, it is essential to ensure that there is enough space for media to tumble effectively. How does ball mill work The material fed into the drum through the hopper, motor drive cylinder rotates, causing grinding balls rises and falls follow the drum rotation direction, the grinding media be lifted to a certain height and then fall back into the cylinder and onto the material to be ground. The rotation speed is a key point related to the ball mill efficiency, rotation speed too great or too small, neither bring good grinding result. Based on experience, the rotat

ion is usually set between 4-20/minute, if the speed too great, may create centrifuge force thus the grinding balls stay with the mill perimeter and dont fall. In summary, it depends on the mill diameter, the larger the diameter, the slower the rotation (the suitable rotation speed adjusted before delivery). What is critical speed of ball mill? The critical speed of the ball mill is the speed at which the centrifugal force is equal to the gravity on the inner surface of the mill so that no ball falls from its position onto the mill shell. Ball mill machines usually operates at 65-75% of critical speed. What is the ball mill price? There are many factors affects the ball mill cost, for quicker quotations, kindly let me know the following basic information. (1) Application, what is the grinding material? (2) required capacity, feeding and discharge size (3) dry or wet grinding (4) single machine or complete processing plant, etc.