calculation of nip angle jaw crusher

gyratory crushers

The belowimage shows a sectional view of a typical gyratory crusher. This type of machine is, by virtue of chronological priority, known as the standard gyratory crusher. Although it incorporates many refinements in design, it is fundamentally the same crusher that first bore the name of gyratory; its crushing chamber is very much the same shape; the motion is identically the same, and the method of transmitting power from belt to crushing head is similar. It is an interesting fact that the same similarity in essential features of design exists in the case of the standard, or Blake type, jaw crusher, which is something in the way of a tribute to the inspiration and mechanical ability of the men who originated these machines.

Essentially, the gyratory crusher consists of a heavy cast-iron, or steel, frame which includes in its lower part an actuating mechanism (eccentric and driving gears), and in its upper part a cone-shaped crushing chamber, lined with wear-resisting plates (concaves). Spanning the crushing chamber across its top is a steady-rest (spider), containing a machined journal which fixes the position of the upper end of the main shaft. The active crushing member consists of the main shaft and its crushing head, or head center and mantle. This assembly is suspended in the spider journal by means of a heavy nut which, in all but the very large machines, is arranged for a certain amount of vertical adjustment of the shaft and head. At its lower end the main shaft passes through the babbitted eccentric journal, which offsets the lower end of the shaft with respect to the centerline of the crusher. Thus, when the eccentric is rotated by its gear train, the lower end of the main shaft is caused to gyrate (oscillate in a small circular path), and the crushing head, likewise, gyrates within the crushing chamber, progressively approaching, and receding from, each element of the cone-shaped inner surface.

The action of the gyratory crusher, and of the other member of the reciprocating pressure family, the jaw crusher, is fundamentally a simple one, but as will be seen a great deal of thought and some very progressive engineering has been expended upon the design of crushing chambers to increase capacities and to permit the use of closer discharge settings for secondary and fine-reduction crushing (various crusher types).

Referring to the table, always available from the manufacturer, it will be noted that standard gyratory crushers are manufactured in commercial sizes ranging from 8 to 60 receiving openings. Capacities are listed, for minimum and maximum open-side discharge settings, in short tons per hour, and the horsepower requirements for soft and hard materials are listed for each size. The capacities, and the minimum settings, are based upon the use of standard (straight-face) concaves.

Primary gyratory crushers are designated by two numbers. These are the size of the feed opening (in inches) and the diameter of the mantle at its base (in inches). A 60~x~89 crusher would have an opening dimension of 60 inches (152 cm) and a diameter across the base of the mantle of 89 inches (226 cm).

To stand up under the extremely rugged work of reducing hard and tough rock and ore, and in doing so to maintain reasonably true alignment of its running component, the crushermust necessarily be of massive and rigid proportions, rigidity being of equal importance to ultimate strength. Regardless of the tensile strength of the metal used in the main frame, top shell, and spider, these parts must be made with walls and ribs thick enough to provide this rigidity. Therefore it is practicable to use close-grained cast iron, and special high-test mixtures of cast iron, for these parts, if the machine is intended for crushing soft or medium materials. When very hard and tough materials are to be crushed, the machine is usually strengthened by substituting cast steel in one or more of its parts.

Wearing parts in the gyratory crusher may be either chilled cast iron or manganese steel, depending on the character of the material to be crushed and the particular class of service for which the machine is intended. Standard crushers, in the small and medium sizes, are customarily fitted with chilled-iron head and concaves for crushing soft and medium limestone and materials of similar hardness and abrasiveness, because its relatively low first cost and excellent wearing qualities make it the most economical material to use when the service is not too severe. Manganese steel, which combines extreme toughness with unsurpassed wear-resistance, is the universal choice for crushing hard, tough rock regardless of the class of service or type of crusher. Even though the rock be quite soft and non-abrasive, it is general practice to use manganese steel concaves in the larger sizes of primary crushers because of the shocks attendant upon handling large and heavy pieces of rock.

The primary rockbreaker most commonly used in large plants is the gyratory crusher, of which a typical section is shown in Fig. 5.It consists essentially of a gyrating crushing head (521) working inside a crushing bowl (522) which is fixed to the frame (501).

Thecrushing head is carried on a short solid main shaft (515) suspended from the spider (502) by a nut (513) ; the nut fits into the seating of a sleeve (514) which fixes its position in relation to the spider and, therefore, to the frame (501). The lower part of the main shaft fits into a sleeve (530) set in an eccentric (527), to which is keyed the bevel driving gear (528) ; the bevel pinion (533) is similarly fastened to the countershaft (535) and engages with the bevel gear. The whole of this driving assembly is protected from grit and dust by means of a dust seal (524), (525), and (526).

The countershaft carries the driving pulley, and as it revolves it causes the eccentric to rotate ; as it rotates the main shaft gyrates and with it the crushing head ; the top of the shaft at the point of suspension has practically no movement. Although the motion of the head is gyratory, the main shaft is free to rotate in the eccentric and it actually revolves slowly in relation to the bowl, thus equalizing the wear on the mantle (519) which lines the head and on the concave liners (522 and 523) which comprise the bowl. Both mantle and bowl liners are usually made of manganese steel. The suspension nut (513) is adjustable and enables the crushing head and main shaft to be raised in relation to the bowl to compensate for wear. The size of the product is determined by the distance between the bottom edges of the crushing head and the bowl, in the position when they are farthest apart.

The crushing action is much the same in principle as that of a jaw crusher, the lumps of ore being pinched and broken between the crushing head and the bowl instead of between two jaws. The main point ofdifference between the two types is that the gyratory crusher does effective work during the whole of the travel of the head, whereas the other only crushes during the forward stroke. The gyratory crusher is thereforethe more efficient machine, provided that the bowl can be kept full, a condition which is, as a rule, easy to maintain because it is quite safe to bury the head in a pile of ore.

Tables 7 and 8 give particulars of different sizes of gyratory crushers. As in the previous paragraph, the capacity figures are based on material weighing 100 lb. per cubic foot and should be increased in direct proportion for heavier ores.

Primary and secondary gyratory crushers, including the cone crusher, can be directly connected to slow speed motors if desired, but the standard method of drive is still by belt and pulley. Jaw crushers must be belt-driven.

An efficient substitute for the flat belt in all cases is the Texrope drive, which consists of a number of V-shaped endless rubber belts running on special grooved pulleys. The grip of these belts is so great that the distance between the pulley centres can be reduced to about 30% of that required for a flat belt. This results not only in a saving of space but also in greater safety, since the drive is easier to protect and there is no danger of an accident such as might occur if a long belt were to pull through its fasteners. Moreover, the short drive makes it possible for any stretch to be taken up by moving the motor back on its rails without the necessity of cutting and rejoining the belts. The flexibility and ease of maintenance of the Tex-rope drive makes it very suitable for crushing machines.

LOW OPERATING COSTS Vertical adjustment compensates for wear on crushing surfaces (also maintains product uniformity). Oiling system provides proper lubrication throughout, including spider. Effective dust seal prevents dust infiltration to moving parts. Long life bearings, easy to replace.

Strength, of course, makes an all-important contribution to the rugged heavy duty service and day-in, day-out dependability demanded of a crusher. However, strength does not necessarily mean excessive weight. The metals and alloys used in construction and the distribution of weight are actually the determining factors in the strength of a gyratory crusher.

MAINSHAFT ASSEMBLY mainshaft forged steel; annealed quenched and tempered. Tapered to gauge for head center fit. Head center of cast steel. Head mantle of manganese steel. Mainshaft sleeve shrunk on mainshaft to provide renewable wearing surface on spider bearing.

Gyratory crusher advanced design includes the placing of circumferential ribs around the top and bottom shells. These integrally cast reinforcing rings prevent distortion provide the rigidity necessary to maintain true alignment of running parts.

Hollow box construction of the cast steel spider affords maximum strength with the least amount of feed interference. Arms are cast integrally with the heavy outer rim. Crushing stresses are transmitted to the rim, which is taper-fitted to the top shell. Because spider and top shell are interlocked, they reinforce each other to provide maximum stability and rigidity.

The bottom shell is the foundation of the crusher. It must be strong enough not only to support the weight of the crusher, but to withstand extreme crushing stresses (most stresses terminate here) strong enough to protect vital mechanism the eccentric, gears and countershaft assembly housed in the bottom shell. In the Gyratory crusher, bottom discharge design makes possible a compact, squat structure of simplified design and comparatively high strength. Supplementing the strength of the bottom shell are the previously described circumferential ribs. Crushing stresses are transmitted directly to these reinforcing members through three radial arms.

Because the mainshaft does the actual crushing, it must literally possess crushing strength. In the Gyratory crusher, the eccentric is located directly below the crushing head. This design permits the use of a short, rigid mainshaft a mainshaft that will withstand the strain of severe service.

Flexibility is the keynote of the Gyratory crusher efficiency and economy. While your particular installation is designed to best meet your specific and immediate requirements, built-in flexibility permits adaptation to changing operating conditions anytime in the future.

A Gyratory crusher not only affords a maximum capacity-to-size ratio, but provides the variable factors which facilitate increasing or decreasing capacity as the need arises. Flexibility in a Gyratory crusher also permits compensation for wear and assures product uniformity.

In the Gyratory crusher, the use of spiral bevel gears instead of spur gears makes possible the broad range of speeds conducive to meeting varying capacity demands. Because the Gyratory crusher is equipped with an external oiling system, speed may be reduced as much as desired or required. Adequate lubrication is supplied at even the lowest speeds, because the flow of oil is not relative to the crushers operating speed as is the case with an internal system.

With a primary gyratory crusher running at a given countershaft speed, capacity is increased as eccentricity is increased. At a given eccentricity, greater capacity results from higher countershaft speeds. Conversely, reducing either the speed or eccentricity reduces capacity.

Another high capacity characteristic of the Gyratory crusher is a large diameter crushing head. Because the area of discharge opening is directly proportionate to head diameter, high capacities result.

VARIABLE INITIAL SETTINGS The contour of the crushing chamber at the bottom is designed to afford various initial settings without changing the angle of the nip. This is accomplished by installing lower tier concaves of the shape and thickness for the desired setting and capacity.

HOW SIZES ARE DESIGNATED The numerical size designation of Gyratory crushers represents the feed opening and the maximum diameter of the crushing head. For example, a 60-109 Gyratory crusher has a 60-inch receiving opening and an 109-inch maximum diameter crushing head.

ELIMINATES DIAPHRAGM In a gyratory crusher with aside discharge, sticky materials may pack on the diaphragm and eventually cause considerable damage. Thestraight down discharge of the Gyratory crusher is a design simplification that eliminates the diaphragm and itsmaintenance problems.

CONTRIBUTES TO BALANCED CIRCUIT The adaptabilityof a primary crusher to a large extent dictates the plantflowsheet the initial and overall operating costs of subsequent equipment. With a Gyratory primary crusher,these costs are kept at a minimum because the entirecrushing circuit remains in balance. The concrete foundation may be modified for use as a surge bin. This storagecapacity permits controlling the flow of material throughthe plant. Secondary and tertiary crushers, vibrating screens, etc. may be installed in size ranges and types tomeet the requirements of a constant tonnage. For thosefew installations where a side discharge is essential, a discharge spout can be furnished. Another factor in maintaining a balanced circuit is the vertical adjustment(pages 12 and 13) which permits retaining the initial discharge setting by compensating for wear on mantle andconcaves. Related equipment need not be readjusted because of variations of feed size from the primary crusher.

In the Gyratory crusher, the original discharge setting may be maintained for the life of a single set of alloy crushing surfaces with only one resetting of concaves. Raising the mainshaft compensates for wear onconcaves and mantle. This simplified vertical adjustment cuts resetting time facilitates holding product size.

The threaded mainshaft is held in and supported from the spider hub. (See illustration at lower left.) A vertical adjustment range of from 6 inches to approximately 11 inches is possible, depending upon the size of the machine. The original discharge setting can be maintained until the combined wear of mantle and concaves is about one-third of the vertical adjustment.

A cast steel, split adjusting nut with a collar issupported on a two-piece thrust bearing in the spider hub. The nut is threaded for the mainshaft. The outside of the nut is tapered, with the large diameter at the top. The weight of the head and shaft draws the nut down in its tapered seat in the collar to form a self-clamping nut. Desired setting is achieved by positioning split nut in the proper location on the threaded portion of the mainshaft.

The Gyratory crusher is also available with a Hydroset mechanism a hydraulic method of vertical adjustment. With the Hydroset mechanism, compensation for wear and product size control is a one- man, one-minute operation. The Hydroset mechanism consists of a motor-driven gear pump operated by push button.

The accompanying drawings show the simplicity of Hydroset design. The mainshaft assembly is supported on a hydraulic jack. When oil is pumped into the jack, the mainshaft is raised compensating for mantle and concave wear or providing a closer setting. When oil is removed from jack, the mainshaft is lowered and a coarser setting results.

Since the mainshaft assembly is supported on a hydraulic jack, its position with respect to the concaves, and therefore the crusher setting, is controlledby the amount of oil in the hydraulic cylinder.

Oil pressure is maintained in the hydraulic cylinder below the mainshaft by a highly effective chevron packing. The oil supply of the Hydroset mechanism functions independently of the crushers lubrication system.

If a Gyratory crusher equipped with Hydroset mechanism stops under load, the mainshaft may be lowered to facilitate clearing of the crushing chamber by merely pumping oil out of the cylinder. Only under extreme conditions is it necessary to dig out. When the cause of the stoppage is remedied, the oil is pumped back into the cylinder quickly, returning the mainshaft assembly to its initial position.

STEP BEARING consists of bronze mainshaft step, bronze piston wearing plate, and an alloy steel washer between the two. Washer is drilled for oil cooling lubrication. Bearing surfaces are grooved to permit oil distribution.

Utilizing pool lubrication, a gun-type fitting in the spider arm makes it easy to oil the spider bearing. A garter-type oil seal in the bottom of the bearing retains oil. Being flexible, the seal compensates for movement of crusher mainshaft.

The countershaft assembly is an anti-friction, pool-lubricated unit. Both ends of the bearing housing are sealed by garter-type spring oil seals which: (1) keep dust from anti-friction bearings; (2) separate pinion- shaft bearing lubricant from oil lubricating the eccentric and gears.

Getting the most out of a crusher in performance and capacity depends largely upon positive lubrication. And positive lubrication means more than just adequate oil lubrication. It also entails conditioning oil for maximum lubricating efficiency.

The Gyratory crusher is equipped with an externally located, fully automatic lubricating system. Positive and constant lubrication is maintained at all speeds even at the slowest speed. If desired, oil may be circulated through bearings of Gyratory crusher during shutdown periods.

A gear pump circulates oil from storage tank, through crusher and back. Each time oil is pumped to the crusher, it passes through the filter and cooler. The cleaned, cool oil lubricates the step bearing (in Hydroset mechanism only), the eccentric wearing plate and the inner eccentric bearing. At the top of the bearing, most of the oil flows through ports in the eccentric to the outer eccentric bearing. Theoil then flows down the outer eccentric bearing and lubricates the gear and pinion before it is returned to storage. The overflow oil which may have become contaminated is returned immediately to the oil conditioning tank. It does not contact any other wearing parts within the crusher.

The oil conditioning system may be modified to meet your particular applications. In cold climates immersion heaters are installed in the storage tank to preheat oil. This arrangement permits circulating warm oil through the crusher during shutdown periods. A thermostatic control turns heater on and off. Only in a crusher specifically designed for external oiling is it possible to circulate warm oil when the crusher is stopped.

An added measure of safety is providedby the oil conditioning system. Foreignmaterial is removed by pumping warm oilthrough a mechanical filter. After oil isfiltered, it flows through a condenser-type cooler before it is returned to the crusher.

An oil flow switch provides automatic protection against possible damage caused by oil system failure. This switch stops the crusher immediately if oil flow is insufficient for proper lubrication. Interlocks between pump motor and crusher prevent starting crusher before oil circulation begins.

In addition to its other advantages, the externally located oil conditioning system is easy to service. The unit consists of (A) an oil storage tank, (B) a motor-driven gear pump, (C) a pressure- type filter, and (D) a condenser-type cooler.

In the gyratory crusher, expensive castings are protected by replaceable parts. Rim and arm liners protect the spider from wear. Bottom shell liners and shields provide protection below the crushing chamber. An alloy steel shaft sleeve protects the mainshaft in the spider bearing. The eccentric sleeve and bushing are easily replaced when worn.

Because all parts are readily accessible and removable, down time is kept to a minimum. For example, the countershaft assembly is removed as a unit and can be taken to your machine shop for convenient servicing. Eccentric bearings are bronze bushings. Because bronze is used, the need for babbitt mandrels and melting facilities is eliminated.

Sealing out dirt and dust and their equipment-destroying abrasive action results in obvious maintenance economies. The type of dust seal used in the gyratory crusher is the most reliable and effective device ever developed for preventing excessive wear caused by dirt and dust.

In the gyratory crusher, a synthetic, self-lubricating, light-weight ring is used as a dust seal. The ring is enclosed between a dust collar bolted to the bottom shell and a recess in the bottom of the head center. Regardless of the eccentric throw and vertical positioning, the ring maintains its contact with the outer periphery of the dust collar. Because of its light weight and self-lubricating characteristics, wear on this ring is negligible.

Provisions have been made on the gyratory crusher for the introduction of low pressure air to the dust seal chamber. This internal pressure, which can be obtained through the use of a small low pressure blower, creates an outward flow of air through the dust seal. This prevents an inward flow of abrasive dirt and dust. The combination of a highly effective sealing ring and the utilization of internal air pressure protects the eccentric and gears from destructive infiltration even under the most severe conditions. When required, this additional protection is supplied at a nominal additional cost.

All of the operating advantages all of the engineering and construction features described in this bulletin are found in both the primary and secondary gyratory crushers. Of course, certain modifications have been made to efficiently accomplish the tough, rugged job of secondary crushing. For instance, the secondary gyratory crusher has been engineered to accommodate the greater horsepower requirement of secondary crushing. Increased strength and durability have been built into all components.

In the past, primary crushers had to be set extremely close in order to provide an acceptable feed for secondary crushers. As a result, primary crushers were penalized by reduced capacity and excessive maintenance. The secondary gyratory crusher was engineered to solve this problem.

Anticipating product size variations, Allis-Chalmers has designed the secondary crusher with a large feed opening one large enough to accept oversized materials. This design feature is particularly advantageous when the secondary gyratory crusher follows a primary crusher that has no vertical adjustment for wear.

A large diameter crushing head along with tailored-to-your-operation design results in big capacity. An acute angle in the crushing chamber and a long parallel zone facilitate precision setting assure a cubical, well graded product distributes even the normal wear throughout the crushing chamber.

1. Spider cap 2. Spider 3. Hour glass bushing 4. Spider bearing oil seal 5. Spider bearing oil seal retainer 6. Spider bearing oil seal retainer screws 7. Spider joint bolts 8. Spider joint bolt nuts 9. Spider joint bolt lock nuts 10. Spider arm shield 11. Spider arm shield bolts 12. Spider arm shield bolt nuts 13. Center spider rim liners (not shown) 14. End spider rim liners 15. Rim liner bolts 16. Rim liner bolt nuts 17. Spider bearing spherical support ring 18. Spider bearing spherical support ring seat 19. Spider lubricating hose bushing 20. Spider lubricating hose 21. Spider lubricating hose bracket 22. Spider lubricating hose grease fitting 23. Spider lubricating hose bracket bolts 24. Spider joint studs (not shown) 26. Mainshaft thrust ring 27. Mainshaft thrust ring bolts 31. Top shell 32. Concave support ring 33. Upper concaves 34. Upper middle concaves 36. Lower middle concaves 37. Lower concaves 43. Bottom shell 44. Bottom shell joint bolts 45. Bottom shell joint bolt nuts 46. Bottom shell joint bolt lock nuts 47. Bottom shell bushing 48. Bottom shell bushing key 49. Bottom shell bushing clamp plate 50. Bottom shell bushing clamp plate bolts 51. Bottom shell front arm liners 52. Bottom shell rear arm liners 53. Bottom shell side liners 54. Bottom shell hub liners 55. Dust collar 56. Dust collar cap screws 57. Dust collar gasket 63. Bottom plate 64. Bottom plate studs 65. Bottom plate stud nuts 66. Bottom plate stud lock nuts 67. Bottom plate dowel pin 68. Bottom plate drain plug 69. Bottom plate gasket 95. Eccentric 96. Eccentric sleeve 97. Eccentric sleeve key 98. Bevel gear 99. Bevel gear key 100. Bevel gear key cap screws 101. Eccentric wearing plate 107. Mainshaft 108. Head center 109. Mantle lower section 110. Mantle upper section 111. Head nut 112. Dowel pin (for keying head nut to mantle) 113. Mainshaft sleeve 114. Adjusting nut 115. Adjusting nut collar 116. Enclosed ring type dust seal sealing ring 117. Enclosed ring type dust seal retaining ring 118. Enclosed ring type dust seal bolts 119. Adjusting nut tie bar 120. Adjusting nut tie bar bolts 121. Adjusting nut key 124. Pinion bearing housing 125. Pinion bearing housing gasket 126. Pinion bearing housing studs 127. Pinion bearing housing stud nuts 128. Pinion bearing housing stud lock nuts 129. Pinion bearing housing dowel pin 130. Pinion bearing housing oil drain plug 131. Pinion bearing housing oil level plug (not shown) 132. Pinion bearing housing oil filler plug 133. Pinionshaft 134. Drive sheave and bushing 135. Drive sheave key 136. Pinion shaft lock nut spacer 137. Pinion shaft lock nut spacer lockwasher 138. Pinion shaft lock nut spacer lockwasher gasket 139. Pinion bearing seal plate 140. Pinion bearing oil seal 141. Pinion bearing seal plate gaskets 142. Pinion bearing seal plate bolts 143. Pinionshaft outer bearing 144. Pinionshaft inner bearing 145. Pinionshaft bearing spacing collar 146. Pinionshaft bearing spacing collar gasket 147. Pinion 148. Pinion key 149. Pinion retainer plate 150. Pinion retainer plate bolts

In the dimension charts above, the first number in each size classification designates the size of the receiving opening in inches. The second number is the largest diameter of the mantle in inches. Primary crushers having the same mantle diameter use the same size bottom shell, gears, eccentrics and countershaft assemblies.

Secondary crushers use the same size bottom shells as certain size primary crushers, but different size top shells, mainshaft and spider assemblies. The 30-70 secondary gyratory crusher uses the bottom shell of the 42-65 primary crusher; the 24-60 secondary uses the 30-55 primary bottom shell.

Capacities given here are based on field data under average quarry conditions when crushing dry friable material equivalent to limestone. Because conditions of stone and methods of operation vary, capacities given are approximate only.

Where no capacity data is given the crusher is under development.Figures under Maximum Horsepower are correct only for throw and pinion Rpm given above. When speed is reduced, Maximum Horsepower must also be reduced proportionately.

This graph is based on customary practice and is principally a guide. Size of crusher may vary considerably with different materials, depending upon stratification, blockiness, quarry methods and size of quarry trucks. Pieces that cannot be handled by crusher without bridging should be broken in the quarry.

The screen analysis of the product from any crusher will vary widely, depending upon the character of the material, quarry conditions, and the amount of fines or product size in the initial feed at the time

the sample is taken. These factors should be taken into consideration when estimating the screen analysis of the crusher product. Product gradation curves based on many actual screen analyses have been prepared which can be used for estimating.

The crusher discharge opening on the open side will govern the product gradation from a crusher if corrected to take into consideration quarry or mine conditions, particularly as to the amount of fines in the crusher feed. The tabulation at the left is basedon an average of many screen analyses and gives the approximate percentage of product equal to the open side setting of the crusher. Its actual use when the feed conditions are definitely known should be corrected to take care of these conditions, particularly insofar as fines or product size in the feed are concerned. The curves on these pages have been prepared giving the approximate screen analysis of the crusher product and should be used in conjunction with Table I

Table I shows 90% of product should pass a 6-inch square opening flat testing sieve. Using the 90% vertical line on Table II, follow it up to the horizontal line of 6 inches. Follow the nearest curve to the intersection, and using this curve you will get the following approximate screen analysis.

Until recently, there has been no way of accurately determining the power required for agiven crushing operation. With little or no factualoperating data correlated into useful form, it wasdifficult even for the most experienced operators toarrive at a correct size crusher or a proper size crusher motor to do a given job.

The correlation of all this factual material, from extensive field operating data and laboratory data covering wide varieties of material, ranges of reduction sizes, and types of equipment, made it possible to establish a consistent common factor known asthe Work Index for accurately determining the power required for crushing.

In the Work Index method, frequently referred to as the Bond method, the Work Index is actually the total work input in kwhr per short ton required to reduce a given material from theoretically infinite particle size to 80% passing 100 microns or approximately 67% passing 200 mesh. Knowing the Work Index, you need only apply the given equation to determine power input required. The calculated power input enables you to select the proper crusher.

In order to simplify the selection of a crusher by the Work Index method, the following form has been developed. References below the form explain the various parts of the calculation, and, immediately below, a complete example is worked out.

REFERENCE I Average Impact. As noted, the Work Index is determined from the average impact value and the specific gravity of the material being crushed. The impact value and Work Index can be determined in the Processing Machinery Laboratory, or these values can be determined from a comparable operation in the field. Acomplete listing of Work Indexes of materials which have been tested in the laboratory.

REFERENCE II Feed Size. In the case of a primary crusher this may be somewhat difficult to obtain. Experience indicates, however, that in most cases 80% of the feed size will pass a square opening equal to from half to two-thirds of the crusher receiving opening.

A crushed stone producer desires a primary crusher to handle the product from a 3-yard shovel at an average rate of 350 tph. The rated capacity of the crusher must, of course, be greater than this because of inevitable quarrying and crushing delays. A crusher setting of 5 in. on the open side is desired because of following equipment and the requirements for stone.

MATERIAL: Limestone WORK INDEX 10.7 CRUSHER: 42-65 Primary gyratory Open Side Setting: 5; Eccentric Throw: 1 Recommended Operating Speed; 400 Rpm (Approximately 80% of Maximum Speed) Capacity at Recommended Speed: 438 Short Ton/Hour Maximum Horsepower Allowable at Selected Throw and Speed: 213 Horsepower. FEED SIZE: (F) 80% Passes 28 (66% of Feed Opening) F 711,000 Microns F = 842 PRODUCT SIZE: (P) 80% Passes 4, P = 108,000 Microns P = 328 F P = 514 HORSEPOWER/SHORT TON = 10.7 x 13.4 x 514/842 x 328 = .267 .267 Horsepower/Short Ton x438 Short Tons/Hour Capacity = 117Horsepower Required RECOMMENDED MOTOR SIZE: 150 Horsepower Motor.

Tabulated data presented has been compiled from tests made in the Allis-Chalmers Research Laboratory. This data is a cross section of impact and compressive strength tests made on hundreds of different rock samples for customers in the U.S. and abroad.

Ten or more representative pieces of broken stone, each of which passes a square opening three inches on a side and will not pass a two-inch square, are selected and broken individually between two 30-lb pendulum hammers. The hammers are raised by an equal amount and released simultaneously. This is repeated with successively greater angles of fall until the specimen breaks. Its impact strength is the average foot-pounds of energy represented by the breaking fall divided by the thickness in inches. The average impact strength is the average foot-pounds per inch required to break the ten or more pieces, and the maximum is the foot-pounds per inch required to break the hardest piece, the highest value obtained.

The compressive strengths of many materials have been measured in the Laboratory by cutting samples into one-inch cubes which are then broken under slow compression in a Southwark compression tester. This indicates the compressive strength in pounds per square inch.

The correlation between the compressive strengthand the impact crushing strength is inconsistent, and experiencehas shown that theimpact strength is abetter criterion of theactual resistance tocrushing. The impactdevice more nearly approaches actual crusher operation, both invelocity of impact andin the fact that broken stone is used intesting.

The average impactcrushing strength isan indication of theenergy required forcrushing, while themaximum compression values indicate the danger of crusher breakage and the type of construction necessary. Crusher capacities do not vary greatly with the impact strength. There is a capacity increase of less than 10% from the hardest to the softest stone, where packing is not a factor.

estimate jaw crusher capacity

My friend Alex the SAG Mill Expert, says this equation you picked up doesnt look right.The numerator is calculating the volume of one swing of a jaw, times thedensity of material in the chamber, times the number of cycles perminute. This should give you the mass of material crushed per minute.

The example youve given is missing information needed to calculate theA term it doesnt tell you the height of the crushing chamber. The two measurements youve got are the top opening width and top openinglength; A should be the jaw throw (not given) times the crushing chamber height (also not given).

Tables hereincontain information that is typical of output from crushers discussed above. The capacities are based on the crusher receiving full, continuous feed of clean, dry, friable stone weighing 100 lb/cu ft.

These capacity tables show several significant differences between the two common types of primary crushers. A jaw crusher has a wider range of settingsgenerally, a maximum of two to three times the smallest setting. The tables also show that for a comparable maximum size of feed and setting, a gyratory crusher has a much greater capacity than a jaw crusher. Thegyratory crusher obtains this advantage only at the cost of greater power to drive the crusher.

The selection of an appropriate primary crusher for a given use has to be based on a consideration of several factors. These are not limited to the design features of the crusher. If the feed is blasted rock from a quarry, the size and method of handling the feed influence crusher selection. For instance, a power shovel is limited by the dimensions of the dipper in the maximum size of rock it can handle well. It may be that the bucket of a 1- yd shovel would be too small to load the maximum size rock allowed in a jaw crusher with a 42-in. opening.

If a 60-in. gyratory crusher is to process material from a quarry where a shovel loads the raw material, the shovel would probably have to have a dipper capacity of at least 5 cu yd to be compatible. It may be more economical to change the blasting pattern to produce larger rock that can be handled by a larger loader-hauler combination and still fit in the primary crusher. Generally, a large reduction ratio will be required of the primary crusher.

If gravel has relatively small maximum particle sizes, a large feed opening is not needed. It may be more economical to feed all of the pit-run material into the primary crusher rather than to remove the part that is already smaller than the crusher setting. That calls for a crusher with a higher capacity. There are many feasible solutions to the crusher selection problem, so the aggregate producer must select crushers with total operations and economics in mind.The selection of reduction crushers is also a complex problem.

The economic selection of any particular crusher depends on the ability of the crusher to handle the maximum size of feed, reducing this at the highest possible reduction ratio and least cost for the original installation, maintenance, and power. For any particular aggregate production plant, it is advisable to make preliminary determinations of the types of crushers needed. If most of the feed is coarse and stage crushing is required, primary crushers that meet the requirements of reduction and economy and have straight crushing surfaces may be most economical.

Where only a very small percentage of the feed approaches the size of the feed opening of the crusher,nonchoking crushing surfaces in a high capacity crusher may be advisable for the sake of economy. If the plant requires several stages, and several different types of crushers could be used for each stage, the costs of each feasible combination must be analyzed to find the crusher plant with the least total cost.

solutions to improve the production capacity of jaw crusher

Production capacity is the quantitative index to measure the processing ability of jaw crusher. The production capacity of jaw crusher directly affects the economic profits of investors. And the production capacity of jaw crusher is affected by many factors, such as the properties of raw material (hardness, size, and bulk density), type& size of jaw crusher, operation condition of jaw crusher and so on. And the low production capacity is mainly caused by the low discharging capacity. In this article, we mainly introduce some solutions to improve jaw crusher production capacity.

The nip angle means the included angle between movable jaw plate and fixed jaw plate. According to calculation, the max nip angle can reach to 32, but in the actual production, the nip angle is generally between 18-20, smaller than 25. If the nip angle is too large, the raw materials in crushing cavity will be squeezed out of the cavity, which may hurt operators or damage other auxiliary equipment. At the same time, with the increasing of nip angle, the crushing ratio also increases, but the production rate will decrease.

In the actual production process, we can change the size of nip angle by adjusting the discharge opening according to requirements about the final products size. In this case, under the premise of ensuring the final products size, we should adjust the discharge opening. While adjusting the discharge opening, operators should pay attention to the relation between crushing ratio and production rate.

In certain range, properly increase the revolutions of eccentric shaft can also improve the production capacity of jaw crusher, but it will also increase the energy consumption for crushing per unit raw material. If the rotation speed is too fast, the crushed raw materials in crushing cavity will not have enough time to be discharged, which will cause the blocking of jaw crusher. In this case, the production capacity will decrease, but energy consumption will increase. From this we can see that, proper revolution of eccentric shaft is very important.

Through dynamics and physics principle analysis, in order to improve the production capacity, we can change the shape of movable jaw plate, making the nip angle in the lower part as 0 while the nip angle of the upper part stays the same. In this case, the original crushing cavity is divided into two parts: crushing cavity and discharging cavity. The raw materials get crushed in the crushing cavity and discharged from the discharging cavity. Raw materials pass through in unit time increase, the production capacity also gets improved.

In jaw crusher, eccentric shaft, connecting rod, movable jaw plate, fixed jaw plate, scale board are the main wear-resistant parts, operators should pay attention to the lubrication and maintenance of these parts. Once found damage, operators should repair or change the worn parts timely in order to keep the high production capacity of jaw crusher.

By optimizing the shape of movable jaw plate or discharge opening, we can optimize the crushing cavity, enhance improve the discharge capacity and production capacity. At the same time, operators should also lubricate or maintain the related spare parts and optimize the related parameters in order to improve the production capacity.

In order to solve such problems as low production efficiency and difficult installation and maintenance, ZENITH developed a new generation of jaw crusher--- C6X Series Jaw Crusher. It is the most ideal coarse crushing equipment on current market because a

As the new generation of crusher, PEW Series Jaw Crusher is born with innovative significance. The unique design concept makes this crusher achieve perfect combination between crushing efficiency and operating cost.

calculating the nip angle of the chamber of jaw and cone crushers with inclusion of the velocity vector | springerlink

V. P. Sergeev, Influence of the longitudinal movement of the moving jaw on the crushing process, in: A Study of Crushing and Ore Concentration Equipment [in Russian], VNII-stroidormash, Moscow (1966).

Rudnev, A.D., Rudnev, V.D. Calculating the nip angle of the chamber of jaw and cone crushers with inclusion of the velocity vector. Soviet Mining Science 21, 155159 (1985). https://doi.org/10.1007/BF02499621

henan mining machinery and equipment manufacturer - effect a nip angle in a gyratory crusher

maximum nip angle on gyratory crusher model can accept. (B) Nip angle: Sinter Crusher; Jaw Gyratory Crusher; Gyrasphere Cone Crushers ...Dear All I would like to know what is a nip angle & why it ... Wide nip angles can tend to expel material as the jaw closes as a ... Gyratory Crushers; Impact ...

Ore beneficiation equipment, sand making equipment, crushing equipment and powder grinding equipment, which are widely used in various industries such as metallurgy, mine, chemistry, building material, coal, refractory and ceramics.

tips to maximize crushing efficiency - pit & quarry : pit & quarry

To apply what this means to your crusher, operations produce the exact sizes in the reduction process that their market demands. In the past, quarries produced a range of single-size aggregate products up to 40 mm in size.

In practice, many jaw crushers are not fed to their designed capacity. This is because the subsequent processing plant does not have sufficient capacity to handle the volume of material that would be produced if the jaw crusher was working to capacity.

If you seek fewer fines, trickle feeding material into the jaw crusher could achieve this. But this would have an adverse effect on particle shape, and it also reduces throughput capacity, hindering the crushers efficiency.

Ideally, the feed rate should not be switched from choke to non-choke, as this can cause problems downstream at the secondary processing plant. In practice, many jaw crushers are fed in this intermittent fashion due to gaps in the delivery of feed material from the quarry.

The reduction ratio is then calculated by comparing the input feed size passing 80 percent versus the discharge size that passes 80 percent. The finer the closed-side setting, the greater the proportion of fines produced.

The closed-side setting of a jaw crusher helps determine the nip angle within a chamber, typically 19 to 23 degrees. Too large of an angle causes boiling in the crushing chamber. This is where the jaw plates cannot grip onto the rock, and it keeps slipping up and down, avoiding being crushed. The nip angle gets flatter as the machine is set tighter.

The settings on a jaw crusher are designed to produce material ideal for secondary crushing. The best particle shape is typically found in material that is about the same size as the closed-side setting.

Smaller sizes will contain a higher proportion of elongated particles because they have passed through the crusher without being touched. Larger sizes may also contain a higher proportion of elongated particles because they are further from the closed-side setting. This can cause bridging issues in downstream machines.

It is critical that a cone-type crusher be choke fed to produce the best product shape and quality. It is not as important in a jaw, as material is not generally stockpiled after the jaw. Because the cone is part of the secondary and tertiary stations, particle shape assisted by a choke-fed chamber is important because finished products are created in these stages.

Choke feeding is important for cone crushers because it maintains a good particle shape by facilitating an inter-particle crushing action. Trickle feeding is not the best option because it increases the proportion of flaky material in the crusher product, hindering its efficiency.

It is a good rule to maintain about 10 to 15 percent of material finer than the closed-side setting in the feed to assist crushing action. More than 10 to 15 percent will likely cause ring bounce due to the pressures in the chamber.

Its important to find the right liner for the feed gradation and desired product. If the liner is too large, feed material will drop too far in the chamber before being crushed. Too fine of a liner will prevent material from entering the chamber at all.

Monitoring the crushing force as registered through the load on the crusher motors, as well as the pressure on the hydraulic mantle adjustment mechanism, will give forewarning of crusher packing problems before they affect your efficiency.

Try to match the closed-side setting of the crusher to the top size of the product to be produced. If closing the circuit at 1 in. to produce a 1-in.-minus product, set the crusher at or near 1 in. or slightly below.

The initial impact is responsible for more than 60 percent of the crushing action, with the remainder made up of impact against an adjustable breaker bar and a small amount of inter-particle collision.

This is why it is vitally important that the feed arrangement to an impact crusher ensures an even distribution of feed material across the full width of the rotor. This will allow for even distribution of energy into the feed material and uniform wear patterns, ensuring consistent product gradation and power consumption.

Slower rotor speeds can be used as a means of reducing fines but may result in a product with more oversize or return than is desired. Slower rotor speeds are preferable as a means of minimizing the wear on crusher components, as well as for achieving less fines production and optimal product size.

The product grading from an impact crusher will change throughout the life of the wear parts, particularly the impact hammers or blow bars. As the profile of the hammer changes with increased wear, the product grading becomes coarser. Many modern impact crusher installations have a variable speed drive arrangement that allows an increase in the rotor speed to compensate for wear on the impact hammers.

In many impact crushers, a third curtain or crushing chamber can be added to increase reduction in every pass through the machine. This can be important in finer product applications where the third chamber can provide the desired output gradation. A third chamber that increases the reduction will also increase the power needs and, normally, the wear cost.

One tip to consider: Decreasing the gap between the hammers and impact curtain increases particle retention in the chamber. This increases the size reduction ratio, but it also reduces efficiency throughput capacity and increases fines production.

Follow the steps outlined in this article to achieve the best crushing efficiency for jaw, cone, gyratory and impact crushers and to ultimately increase profits and reduce fines production. By taking these steps, youre reducing the amount fines produced and adding dollars to your pocket.

roll crushers - sciencedirect

This chapter deals with the designs and operation of different types of roll crushers. Two main types are indicated. The first type where the rolls are rotated in opposite direction with one roll spring loaded. Here, the mineral particles are nipped and crushed as they pass between rolls. In the second type, known as high pressure grinding roll (HPGR), the mineral sizes are reduced by compressive and interparticle pressure. The forces responsible for communication in each case are illustrated and the mathematical laws involved are explained, using solved examples. Commercial circuit diagrams of integrated plants are illustrated to help understand the theory and their practical applications.