flotation cell mining equipment

sepor, inc | gold mining equipment, mine lab testing equipment

Sepor, Inc. began business in 1953 with the introduction of the Sepor Microsplitter , a Jones-type Riffle splitter, developed by geologist Oreste Ernie Alessio for his own use in the lab. Sepor grew over the next several decades to offer a complete line of mineral analysis tools, as well as pilot plant equipment for scaled operations.

advanced flotation technology | eriez flotation division

Eriez Flotation is the world leader in column flotation technology with over 900 installations. Columns are used for floating well-liberated ores. Typically they produce higher grade and have lower power costs than conventional cells. Applications include Roughers Scavengers Cleaners

Eriez Flotation is the world leader in column flotation technology with over 900 installations. Columns are used for floating well-liberated ores. Typically they produce higher grade and have lower power costs than conventional cells. Applications include

The HydroFloat fluidized bed flotation cell radically increases flotation recoveries of coarse and semi-liberated ores. Applications include: Split-feed flow-sheets Flash flotation Coarse particle recovery

The StackCell uses a 2-stage system for particle collection and froth recovery. Collection is optimized in a high shear single-pass mixing canister and froth recovery is optimized in a quiescent flotation chamber. Wash water can be used.

The StackCell uses a 2-stage system for particle collection and froth recovery. Collection is optimized in a high shear single-pass mixing canister and froth recovery is optimized in a quiescent flotation chamber. Wash water can be used.

The CrossFlow is a high capacity teeter-bed separator, separating slurry streams based on particle size, shape and density. Applications include: Split-feed flow-sheets with the HydroFloat Density separation Size separation

The rotary slurry-powered distributor (RSP) is used to accurately and evenly split a slurry stream into two or more parts, without creating differences based on flow, percent solids, particle size or density. Applications include Splitting streams for feeding parallel lines for any mineral processing application

The rotary slurry-powered distributor (RSP) is used to accurately and evenly split a slurry stream into two or more parts, without creating differences based on flow, percent solids, particle size or density. Applications include

Eriez Flotation provides advanced engineering, metallurgical testing and innovative flotation technology for the mining and minerals processing industries. Strengths in process engineering, equipment design and fabrication positionEriez Flotation as a leader in minerals flotation systems around the world.

Applications forEriez Flotation equipment and systems include metallic and non-metallic minerals, bitumen recovery, fine coal recovery, organic recovery (solvent extraction and electrowinning) and gold/silver cyanidation. The company's product line encompasses flotation cells, gas spargers, slurry distributors and flotation test equipment.Eriez Flotation has designed, supplied and commissioned more than 1,000 flotation systems worldwide for cleaning, roughing and scavenging applications in metallic and non-metallic processing operations. And it is a leading producer of modular column flotation systems for recovering bitumen from oil sands.

Eriez Flotation has also made significant advances in fine coal recovery with flotation systems to recover classified and unclassified coal fines. The group's flotation columns are used extensively in many major coal preparation plants in North America and internationally.

Eriez Flotation provides advanced engineering, metallurgical testing and innovative flotation technology for the mining and minerals processing industries. Strengths in process engineering, equipment design and fabrication positionEriez Flotation as a leader in minerals flotation systems around the world. Read More

flotation: the past, present and future of mineral processing? | e & mj

As we look to the future, the mining industry faces a myriad of challenges. While demand for metals like copper, cobalt, lithium and iron ore is projected to reach record highs by 2050, ore grades are decreasing, orebodies are becoming more complex, and fewer tier 1 deposits are being discovered.

As metal prices increase, lower-grade orebodies are becoming economically feasible. But, with lower grades come higher tonnages to sustain production. Processing these deposits requires ever finer grinding for mineral liberation and significant flotation residence times. Lower grades mean that quantities of tailings and mine waste generated are also increasing. And, for many operations, their management is now a significant liability.

In many countries, water scarcity is a big constraint, and specific energy consumption and carbon emissions are rising as grades decrease; points that are at growing odds with mining companies efforts in improving their environmental, social and governance (ESG).

Given this backdrop, its pertinent to ask whether traditional beneficiation techniques like flotation, which have been a staple part of mineral processing circuits for more than 100 years and can, in some instances, be water, energy and time intensive, still serve the industrys needs?

Its not just flotation; mineral processing as a whole faces increased challenges, said Paolo Donnini, principal process engineer at SNC-Lavalin. We need to be smarter in how we go about extracting metals and minerals using less energy, smaller equipment, lesser footprints, less concrete everything really, he said.

Dr. Chris Anderson, specialist process engineer, and Marc Richter, AEM regional director for minerals processing at Hatch, agreed. Sustainable and effective changes in mining practices are essential to enable progress in value chain efficiencies, while recognizing the obligations to other important factors such as climate change, Richter said.

At a macro-level, efficiency in flotation can be driven using holistic engineering approaches. For example, Hatch offers two solutions Mine to Mill and Grade Engineering that aim to increase the overall efficiency of mineral processing operations, inclusive of flotation.

Richter explained: Mine to Mill is a consolidated approach focusing on optimizing mining operations across the value chain with a specific focus on mining (run-of-mine fragmentation), comminution and separation. Optimizing each stage in isolation can result in sub-optimal performance of the overall operation and reduce profitability. To get the best results, each stage is optimized considering the preceding and subsequent stages.

This approach increases plant throughput, reduces energy consumption and operating costs, and improves process efficiency. It can be applied to greenfield projects or business improvement initiatives on existing assets. Typical projects see noticeable throughput benefits with a short payback time.

In December 2020, Hatch announced it would commercialize Grade Engineering, an integrated and methodical approach for assessing the viability and implementation of coarse separation options in preconcentration.

Grade Engineering is designed to reject low-value material early in the extraction value chain to provide high-quality feed, Richter said. By reducing uneconomical material early in the process and improving the quality of the processed ore, Grade Engineering improves overall metal production and reduces water and energy intensities, while minimizing wet tailings.

Anderson added: Through Grade Engineering, we have worked with several clients to develop coarse particle flotation (CPF) circuits aimed at reducing energy consumption in comminution, while ensuring liberation of the valuable metals in the deposit. These projects included evaluating options for the recovery of coarse valuable-bearing composites in the primary grinding circuit and early gangue rejection; and recovery of coarse value-bearing composites lost to conventional flotation tailings.

In the right applications, CPF can offer a reduction in energy demand in preceding comminution stages, increased production rates, and result in coarser tailings streams, which are easier to handle and more geotechnically stable.

The limitations of conventional flotation cells can be overcome through the use of fluidized-bed flotation machines, like Eriezs HydroFloat, which are specifically engineered for the selective recovery of feeds containing very coarse particles. However, the coarsest particle size that can be floated will depend on the liberation of the valuable mineral.

Were also currently implementing a project in North America to install Woodgrove Staged Flotation Reactors (SFR) in a cleaner-scalper application, and several projects looking at Eriez StackCells as a retrofit to either a pre-rougher or rougher application where the client is seeking additional residence time in a constrained footprint, Anderson said.

Conventional flotation cells are known to be relatively inefficient in terms of promoting particle-bubble contacting. However, the historical approach is to compensate by adding a scale-up factor to the residence time obtained through bench-scale tests. This approach is increasingly limited in circuits, which are fine grained, requiring long residence times and complex cleaning circuits to achieve the necessary grade.

Technologies such as the Jameson cell and column cell have been substantially improved over the past 20 to 30 years and are increasingly viewed as mature technologies. The Jameson cell in particular can be used to develop compact full-plant solutions, which offer some attractive advantages. Newer technologies such as the Woodgrove SFR and Direct Flotation Reactor (DFR) cell are also gaining interest in large-scale installations.

The Eriez HydroFloat cell is seeing significant interest in coarse particle rejection applications in copper and PGMs (more on this later). If successful, CPF may eventually become a standard in flotation applications where gangue can be liberated at coarse sizes (~500 microns). Other technologies such as the NovaCell are also gaining traction in this space.

Anderson explained: Our role is to help the client through the process development and bring newer technologies into consideration as early as possible, particularly in the conceptual and prefeasibility phases.

Columns and Jameson cells can be simulated using traditional batch flotation tests and HydroFloat performance can be inferred based on mineralogy and liberation information. Ultimately, pilot-scale test work must be performed. However, the information derived from early mineralogy and bench-scale tests can be used for trade-off studies to focus in on high-value alternatives.

I think low-footprint technologies such as Jameson cells and Woodgrove cells may prove disruptive as they allow substantial throughputs with a low footprint. In the long term, these technologies may find applications closer to the mining face, especially for underground applications.

Like Richter and Anderson, Donnini has noticed a growing interest in novel flotation technologies over the past five years and, more importantly, a willingness from mining companies to consider their applicability and economic feasibility.

Were starting to dissect flotation, he said. Rather than trying to create huge cells of 500 cubic meters (m3) or more, vendors like Woodgrove and Eriez are trying to get greater efficiencies from smaller cells. And theyre doing that by looking at the fundamentals of flotation. For example, Woodgroves SFR splits the flotation process into three stages contacting, separation, and then removal of the froth and tails. Rather than looking at flotation as a macro process, its being looked at more closely as a micro process.

Likewise, classically in flotation, we try to embrace the whole particle size distribution of the feed material. But with technologies like Eriezs HydroFloat, theyre suggesting that we narrow the particle-size distribution to create more efficiency. Its a much more elegant, accurate and precise approach to the process.

With CPF, you dont have to grind the ore to the fine endpoint thats required for conventional flotation technology, he explained. You can separate ore from gangue at a size that is roughly twice the size of conventional technology. Which means you dont have to over grind and you dont have to waste any energy, which is very expensive. Also, mines dont have to worry about storing tailings that are very fine and unstable the material can be easily dewatered and you can reduce conventional flotation capacity as well.

It depends upon the ore and its density but, for copper, which were really focusing on, you get an acceptable recovery in conventional flotation up to about 120 or 130 microns. Certainly, it drops off before 200 microns.

With CPF, you can usually take that up to 400 microns, which reduces the amount of grinding needed by half. In grinding, the amount of energy required increases disproportionately as the material becomes finer the finer the material being ground, the more energy is required which is why ultra-fine grinding mills use a lot of energy.

According to a new report from Weir Group, Mining Energy Consumption 2021, comminution accounts for 25% of final energy consumption at the average mine site. Across the hard-rock mining sector, this equates to around 1% of total global energy consumption every year. The report author, Marc Allen, stated that a 5% incremental improvement in energy efficiency across comminution could result in GHG emission reductions of more than 30 million metric tons (mt) of CO2e. To put that into perspective, New Zealands total emissions stand at around 35 million mt of CO2e.

CPF is not a new concept. However, what is new is its application at a commercial scale in base metals. Eriez has been applying CPF in phosphate and potash for 20 years and, in the past eight years, has been working to bring the benefits into base metals operations, particularly copper.

We did a lot of pilot work at Rio Tinto Kennecott Utah Copper in the U.S., Wasmund said. And we discovered that CPF really suits tails scavenging. When we started looking at the tails of conventional plants, we realized the material being lost to tails wasnt spread across the entire size distribution. It was actually very low in the size distribution where conventional flotation is effective, which makes sense.

Where we see a big drop-off is where the material is too coarse, or where its too fine. And we found that its very easy to develop a business case for reprocessing tails from a conventional plant using the HydroFloat. You can make money just by reprocessing and treating the material that conventional flotation isnt good at recovering.

Conventional flotation is not efficient for coarse particles, explained Wasmund. But what if we put [these new flotation technologies] right into the mill circuit and remove a coarse product before we overgrind it? Then youd get all the benefits of having a coarse tail, a reduction in energy requirements, and you can reduce the size of your plant. Thats what were calling coarse gangue rejection and its being worked on by a number of mining companies right now.

Its an ore sorting technology, except it sorts material at maybe half a millimeter, as opposed to conventional sensor-based ore sorting, which decides whether a 6-in. rock can be differentiated and disposed of before it goes through the plant, Wasmund explained.

This is ore sorting on a much finer scale, and the benefit is that it produces a much higher recovery rate. Sensor-based ore sorting uses blasts of air to shoot rocks containing a certain percentage of gangue off of a conveyor belt. The cut-off grade means that a certain amount of ore is lost along the way. Whereas in coarse gangue rejection, because the material is much finer, the margin of recovery is that much higher.

Anglo American is trialing the use of coarse particle recovery or rejection at Mogalakwena in South Africa as part of its FutureSmart Mining program. The company is also using it in tails scavenging applications at mines like Quellaveco in Peru and El Soldado in Chile, and to generate coarse tails that can be co-deposited with fine material in a dry facility, without a water impoundment.

In a previous interview (Copper processing: the quest for efficiency at scale, December 2020), a spokesperson for Anglo said CPF is a key technology in closing the loop on its water usage too an initial step toward the companys goal of dry processing.

We did a study with Capstone Mining based on their Cozamin site using coarse gangue rejection. And found that we could reduce the ball mill requirement by 30%-50%, convert 30% of the tails to a coarse size (instead of 200 microns, they were 600 microns) and reduce the amount of conventional flotation by 40%, said Wasmund, proudly. All of these benefits are site specific. But CPF, as a tool, can be used in so many different ways. There could be exciting applications that we dont even know about yet!

Another concept that Eriez and others like Woodgrove are working on is staged flotation. Again, the technology is not new Eriez has been running its StackCell in coal applications for 15 years but the company has recently redesigned it to handle base metals.

People have known about this for a long time, but still prefer to do everything in a single stirred tank, Wasmund said. If you break the flotation process down into two steps, as with the StackCell, then you can reduce the amount of working volume needed by a factor of four to five. Thats been validated at a number of sites.

The StackCell, which is much smaller than a traditional flotation cell, can shrink the size of a flotation plant by 50%. The knock-on effect is that it also requires less concrete (smaller carbon footprint), less piping to connect the units, and fewer electrical connections and cable trays and pipe racks, thus reducing CAPEX and engineering times too. This makes it ideal for use in plant expansions or at projects where a minimal footprint is important.

In metal mines, orebody characteristics can vary significantly throughout the life of mine. Initial and ongoing test work are crucial to optimizing the reagents used in flotation circuits. Donnini believes there is much to be learned from the industrial minerals market in this regard.

We just finished an expansion study for an open-pit mine, he explained. Theyre looking at the material theyre going to be mining for the next 10 years, and its very different to what they have been mining for the past 15.

The challenge that creates in flotation is that a lot of factors can interfere with the surface chemistry; Ive known of flotation plants that were upset for weeks due to something that was present in the parts-per-million range. Its a continuously changing environment, and often chemicals are an afterthought.

If we look at the work that Chinese phosphate manufacturers have done to develop reagent packages that are optimized for low-grade minerals they are developing the reagent package and then developing the flotation train based around that. The Phosphate Institute in Florida, which is largely supported by Mosaic, has done lots of work on this too.

I think one of the approaches that is necessary in the future is to identify the reagent package and how we want to use it in the process, and then build the flotation circuit around that package. Im sure others will say they do that already, but were not taking full advantage of the opportunity because most mines are using standard reagents.

I understand its expensive to do investigations and to invest in customized reagents. But at the same time, because of the challenges that are coming our way and theyre not coming, they are here already it makes total sense.

Dr. Kevin Brooks, APC global lead at Hatch, has pioneered the use of model predictive control (MPC) on flotation plants worldwide. Work with Anglo Platinum, FQML and Glencore has demonstrated that the combination of linear models derived from plant testing, and feedback from machine vision applications and/or online grade measurements yields significant benefits in grade, recovery and reagent usage.

Brooks explained: MPC is a technology developed in the oil refining industry more than 30 years ago. Its uptake in the minerals industry has been slow but has accelerated over the last five to 10 years. The technology slots right into the current thinking around Industry 4.0 and machine learning. The ability to optimize a unit in real-time yields paybacks in order of months leads to more consistent operation across shifts and allows plant operators to concentrate on the more manual areas of the unit.

Comminution is also an area where MPC yield benefits. Brooks sees a time when milling and flotation MPCs will be combined using a coordination model. This is the route to online control and optimization embracing the mine to mill concept, he said. Work is already being done to combine scheduling models with MPC to provide this wide scope of optimization and its associated benefits.

Donnini believes that, going forward, a more proactive approach is needed, one that encompasses prediction and automatic adjustment of plant parameters. Advanced process control and statistical process control will allow us to do a much better job of controlling the flotation process than we do today, he said.

In an operating environment, for a model to be useful, it must be able to accurately predict a reactive model is no use, Donnini said. That is a key element of the Industry 4.0 concept; mines need to be able to simulate their processes accurately enough so that they can predict whats going to happen in their processes, based on whats coming in.

Donnini believes advanced process control and neural networks offer a timely solution to predicting flotation performance today. The mathematical algorithms learn how a process operates and, using a certain number of inputs, take corrective action based upon experience.

To me, that is the solution to advanced process control in flotation, he said. I struggle to imagine somebody developing a model, being willing to spend the amount of money that it would take to collect all the data on factors that are likely to affect a flotation process. The alternative is that we learn (the machine learns). The more that machine is exposed to certain events, then the more accurately it can predict conditions.

Companies like Metso Outotec and FLSmidth have technologies that watch and measure froth properties, but I dont think anyone has closed the loop yet to allow those systems to initiate corrective action. Thats still left to the operator to do. But that will be an important step forward in controlling the flotation process.

Another important aspect, one that will be crucial to achieving all of the above, is continuous feed monitoring and particle size analysis. Today, this tends to be done in batches and the tests can take hours to return results. To install a laser scanner over a conveyor would provide a partial solution. However, the accuracy depends heavily on how a particle presents to the laser at a specific point in time.

Most particles are not spherical, but most models are created based on the assumption of spherical particles Again, in time, accurate, real time particle size analysis will improve our modelling capabilities as well.

What this article has shown is that flotation, as a technology, is not going anywhere. In fact, rather than being a limiting aspect of future flowsheets, one that could potentially be phased out over time, its going in quite the opposite direction.

Novel flotation technologies applied in new ways throughout flowsheets will prove invaluable in enabling ESG-conscious mining companies to meet future market demands while minding their resource consumption.

Anderson and Richter agreed. Flotation will remain a necessary portion of the flowsheet for the foreseeable future as a means of concentrating prior to roasting and leaching or even smelting, Anderson said. Dry technologies such as gravity, magnetic separation and electrostatic separation are unable to exploit the differences in surface characteristics which is a key separation method in mineral processing. However, its application may move closer to the mining face as time goes on.

Wasmund was pragmatic. Its important to put flotation into perspective with other extraction processes, he said. Its actually a very green technology, because it allows mines to separate valuable material from waste right after mining. If you compare that to other technologies

For instance, theres a big debate in the nickel market about where nickels going to come from for future electric vehicles. There are two main types of nickel resources: sulphides and laterites (oxides). Flotation can be used to concentrate sulphide nickels up to 30%, whereas laterites cannot be preconcentrated. The whole feed must be treated through high-pressure acid leaching (HPAL) or an electric arc furnace. And that increases the cost of production significantly, as well as the environmental footprint.

When were all driving electric vehicles and charging our cars at home with massive copper wires that connect up to our houses to get that copper and nickel were going to have to mine deposits that are much lower grade than those mined today. And the best way to do that is using more efficient forms of flotation.

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

gold mining equipment

911MPE hassmall gold mining equipment for sale andmore specifically mineral processing equipment. Our equipment is best used in small scale extractive metallurgyoperations operated by small miners or hobbyist prospectors and mining fanatics. 911MPE offers gold mining equipment as well as processing equipment applicable to most any base metals: copper, lead, zinc, nickel, tin, tungsten and more. For the relatively small size of equipment offered, sample preparation and metallurgical laboratories can economically buy good alternatives to the usually unaffordable equipment for sale in the classic market place.

911MPE has for target market what mining professionals consider the pilot-plant scale mining operation or artisanal mining operations with a focus around under 500TPD. Metals you can extract include: gold, silver or other of the precious group as well as the classic base metals; copper, lead, zinc, nickel, molybdenum. Much of our ultra-small scale equipment allows you to process from just a few kilo (pounds) per day and work on your passion for a small budget.

You can buy from us mineral processing equipment starting from crushing, grinding, classification, dredging, gravity separation, flotation, pumps, water treatment and smelting. A line of ovens, furnaces and laboratory equipment is also available.

Making a complete list of gold mining equipment starts with defining the type of gold mining you are doing and the budget you have at your disposal. The type of mining relates to hard rock,eluvial, or placer; alluvial deposits. The capital budget you have to invest in buying your equipment with dictate the scale at which you want to mine and influence the long-term operating costs of your mining operation.

Since most of the information online provides lists of gold mining equipment for amateur level mining with equipment like: gold pans, metal detectors, mini sluice box, blue bowl, geologist rock pick, soil scoop, hand screens/classifiers. The items listed just now fall closer to gold prospecting tools and equipment than actual mining.

I will present here what I consider are major equipment lists for 3 types of mining operations. Remember now, a metallurgist is writing. This will not be flawless and since my speciality is process equipment, that is mostly what will be discussed.

Some amateur level gold prospecting equipment such as metal detectors are often classified as mining equipment by small miners/prospectors operating as a hobby. These items include but are not limited to:

flotation reagents

This data on chemicals, and mixtures of chemicals, commonly known as reagents, is presented for the purpose of acquainting those interested in frothflotation with some of the more common reagents and their various uses.

Flotation as a concentration process has been extensively used for a number of years. However, little is known of it as an exact science, although, various investigators have been and are doing much to place it on a more scientific basis. This, of course, is a very difficult undertaking when one appreciates how ore deposits were formed and the vast number of mineral combinations existing in nature. Experience obtained from examining and testing ores from all over the world indicates that no two ores are exactly alike. Consequently, aside from a few fundamental principles regarding flotation and the use of reagents, it is generally agreed each ore must be considered a problem for the metallurgist to solve before any attempt is made to go ahead with the selection and design of a flotation plant.

Flotation reagents may be roughly classified, according to their function, into the following groups: Frothers, Promoters, Depressants, Activators, Sulphidizers, Regulators. The order of these groups is no indication of their relative importance; and it is common for some reagents to fall into more than one group.

The function of frothers in flotation is that of building the froth which serves as the buoyant medium in the separation of the floatable from the non-floatable minerals. Frothers accomplish this by lowering the surface tension of the liquid which in turn permits air rising through the pulp to accumulate at the surface in bubble form.

The character of the froth can be controlled by the type of frother. Brittle froths, those which break down readily, are obtained by the alcohol frothers. Frothers such as the coal tar creosotes produce a tough bubble which may be desirable for certain separations.

Flotation machine aeration also determines to a certain extent the character of the froth. Finely divided air bubbles thoroughly diffused through the pulp are much more effective than when the same volume of air is in larger bubbles.

In practice the most widely used frothers are pine oil and cresylic acid, although, some of the higher alcohols are gradually gaining favor because of their uniformity and low price. The frothers used depends somewhat upon the location. For instance, in Australia eucalyptus oil is commonly usedbecause an abundant supply is available from the tree native to that country.

Frothers are usually added to the pulp just before its entrance into the flotation machine. The quantity of frother varies with the nature of the ore and the purity of the water. In general from .05 to .20 lbs. per ton of ore are required. Some frothers are more effective if added in small amounts at various points in the flotation machine circuit.

Overdoses of frother should be avoided. Up to a certain point increasing the amount of frother will gradually increase the froth produced. Beyond this, however, further increases will actually decrease the amount of froth until none at all is produced. Finally, as the excess works out of the system the froth runs wild and this is a nuisance until corrected.

Not enough frother causes too fragile a froth which has a tendency to break and drop the mineral load. No bare spots should appear at the cell surface, and pulp level should not be too close to the overflow lip, at least in the cells from which the final cleaned concentrate is removed.

A good flotation frother must be cheap and easily obtainable. It must not ionize to any appreciable extent. It must be an organic substance. Chemically a frother consists of molecules containing two groups having opposite properties. One part of the molecule must be polar in order to attract water while the other part must be non-polar to repel water. The polar group in the molecule preferably should contain oxygen in the form of hydroxyl (OH), carboxyl (COOH), carbonyl (CO); or nitrogen in the amine (NH2) or the nitrile form. All of these characteristics are possessed by certain wood oils such as pine oil and eucalyptus oil, by certain of the higher alcohols, and by cresylic acid.

The function of promoters in flotation is to increase the floatability of minerals in order to effect their separation from the undesirable mineral fraction, commonly known as gangue. Actuallywhat happens is that the inherent difference in wettability among minerals is increased and as a result the floatability of the more non-wettable minerals is increased to the point where they have an attraction for the air bubbles rising to the surface of the pulp. In practical operation the function of promoters may be considered two-fold: namely, to collect and select. Certain of the xanthates, for instance, possess both collective and selective powers to a high degree, and it is reagents such as these that have made possible some of the more difficult separations. In bulk flotation all of the sulphide minerals are collected and floated off together while the gangue remains unaffected and is rejected as tailing. Non- selective promoters serve very well for this purpose. Selective or differential flotation, on the other hand, calls for promoters which are highly selective or whose collecting power may be modified by change in pulp pH (alkalinity or acidity), or some other physical or chemical condition.

The common promoters for metallic flotation are xanthates, aerofloats, minerec, and thiocarbanilide. Soaps, fatty acids, and amines are commonly used for non-metallic minerals such as fluorspar, phosphate, quartz, felpsar, etc.

Promoters are generally added to the conditioner ahead of flotation to provide the time interval required for reaction with the pulp. Some promoters are slower in their action and in such case are added directly to the grinding circuit. Promoters which are fast acting or have some frothing ability are at times added directly to the flotation machine, as required, usually at several points. This practice is commonly known as stage addition of reagents.

The quantity of promoter depends on the character and amount of mineral to be floated, and in general for sulphide or metallic minerals .01 to .20 lbs. per ton of ore are required. Flotation of metallic oxides and non-metallic minerals usually require larger quantities of promoter, and in the case of fatty acids the range is from 0.5 to 2.5 lbs. per ton.

The function of depressants is to prevent, temporarily, or sometimes permanently, the flotation of certain minerals without preventing the desired mineral from being readily floated. Depressants are sometimes referred to as inhibitors.

Lime, sodium sulphite, cyanide, and dichromate are among the best known common depressants. Among organic depressants, starch and glue find widest application. If added in sufficient quantity starch will often depress all the minerals present in an ore pulp. Among the inorganic depressants, lime is the cheapest and best for iron sulphides, while zinc sulphate, sodium cyanide, and sodium sulphite depress zinc sulphide. Sodium silicate, quebracho, and also cyanide are commondepressants in non-metallic flotation.

Depressants are generally added to the grinding circuit or conditioner usually before addition of promoting and frothing reagents. They may also be added direct to the flotation cleaner circuit particularly on complex ores when it is difficult to make a clean cut separation or where considerable gangue may be carried over mechanically into the cleaning circuit as in flotation of fluorspar. Quantity of depressants required depends on the nature of the ore treated and should be determined by actual test. For instance, lime required to depress pyrite may vary from 1 to 10 lbs. a ton.

The function of activators is to render floatable those minerals which normally do not respond to the action of promoters. Activators also serve to render floatable again minerals which have been temporarily depressed in selective flotation. Sphalerite depressed with cyanide and zinc sulphate can be activated with copper sulphate and it will then respond to treatment like a normal sulphide. Stibnite, the antimony sulphide mineral, responds much better to flotation after being activated with lead nitrate.

The theory generally accepted on activation is that the activating substance, generally a metallic salt, reacts with the mineral surface to form on it a new surface more favorable to the action of a promoter. This also applies to non-metallic minerals.

Activators are usually added to the conditioner ahead of flotation and in general the time of contact should be carefully determined. Amounts required will vary with the condition of the ore treated. In the case of zinc ore previously depressed with zinc sulphate and cyanide, from 0.5 to 2.0 of copper sulphate may be required for complete activation. Quantities required should always be determined by test.

The most widely used sulphidizer is sodium sulphide, which is commonly used in the flotation of lead carbonate ores and also slightly tarnished sulphides such as pyrite and galena. In the sulphidization of ores containing precious metals careful control must be exercised as in some instances sodium sulphide has been known to havea depressing effect on flotation of metallics. In such cases it is advisable to remove the precious metals ahead of the sulphidization step.

Sulphidizers are usually fed into the conditioner just ahead of the flotation circuit. The quantity required varies with the characteristics of the ore and may range from .5 to 5 lbs. per ton. Conditioning time should be carefully determined and an excess of sulphidizing reagent avoided.

The function of regulators is to modify the alkalinity or acidity in flotation circuits, which is commonly measured in terms of hydrogen ion concentration, or pH. Modifying the pH of a pulp has a pronounced effect on the action of flotation reagents and is one of the important means of making otherwise difficult separations possible.

Soluble salts may have their source in the ore or water, or both, and in precipitating them out of solution they generally become inert to the action of flotation reagents. Soluble salts have a tendency to combine with promoters thus withdrawing a certain proportion of the reagents from action on the mineral to be floated. Removal of the deleterious salts therefore makes possible a reduction in the amount of reagent, required. Complexing soluble salts by keeping them in solution yet inert to the reagents is in some cases desirable.

Mineral surfaces may vary according to pulp pH conditions as many of the regulators appear either directly or indirectly to have a cleansing effect on the mineral particle. This brings about more effective action on the part of promoters and other reagents, and in turn increases selectivity.

pH control by action of regulators is in some cases very effective in depressing certain minerals. Lime, for instance, will depress pyrite, and sodiumsilicate is excellent for dispersing and preventing quartz from floating. It is necessary, however, to have a definite concentration of the reagents for best results.

The common regulators are lime, soda ash, and sodium silicate for alkaline circuits, and sulphuric acid for acid circuits. Many other reagents are used for this important function. The separation required and character of ore will determine which regulators are best suited. In general, from an operating standpoint, it is preferable to use a neutral or alkaline circuit, but in some instances it is only possible to obtain results in an acid circuit which then will require the use of special equipment to withstand corrosion. Flotation of non-metallic minerals is at times more effective in an acid circuit as in the case of feldspar and quartz. The pulp has to be regulated to a low pH by means of hydrofluoric acid before any degree of selectivity is possible between the two minerals.

Regulators are fed generally to the grinding circuit or to the conditioner ahead of flotation and before addition of promoters and activators. The amounts required will vary with the character of the ore and separation desired. In the event an excessive quantity of regulator is required to obtain the desired pH it may be advisable to consider removing the soluble salts by water washing in order to bring reagent cost within reason.

The tables on the following pages have been prepared to present in brief form pertinent information on a few of the more common reagents now beingused in the flotation of metallic and non-metallic minerals. A brief explanation of the headings in the table is as follows:

Usual Method of Feeding: Whether in dry or liquid form. A large number of reagents are available in liquid form and naturally are best handled in wet reagent feeders, either full strength or diluted for greater accuracy in feeding. Many dry reagents are best handled in solution form and in such cases common solution strengths are specified in percent under this heading. A 10% water solution of a reagent means 10 lbs. of dry reagent dissolved in 90 lbs. of water to make 100 lbs. of solution. Some dry reagents, because of insolubility or other conditions, must be fed dry. This is usually done by belt or cone type feeders designed especially for this service to give accurate and uniform feed rates.

Pasty, viscous, insoluble reagents present a problem in handling and are generally dispersed by intense agitation with water to form emulsions which can then be fed in the usual manner with a wet reagent feederor using a pump.

Price Per Lb.: Prices shown are approximate and in general apply to drum lots and larger quantities F.O.B. factory. This information is very useful whenmaking tests to determine the lowest cost satisfactory reagent combination for a specific ore. Some ores will not justify reagent expenditures beyond a certain limit, and in this case less expensive reagents must be given first consideration.

Uses: General use for each reagent as given is determined from experience by various investigators. Although the Equipment Company uses a large number of these reagents in conducting test work on ores received from all parts of the world, opinion, data, or recommendations contained herein are not necessarily based on our findings, but are data published by companies engaged in the manufacture of those reagents.

The ore testing Laboratory of 911metallurgist, in the selection of reagents for the flotation of various types of ores, uses that combination which gives the best results, irrespective of manufacturer of the reagents. The data presented on the following tables should be useful in selecting reagents for trials and tests, although new uses, new reagents, and new combinations are continually being discovered.

The consumption of flotation reagents is usually designated in lbs. per ton of ore treated. The most common way of determining the amount of reagent being used is to measure or weigh the amount being fed per. unit of time, say one minute. Knowing the amount of ore being treated per unit of time, the amount of reagent may then be converted into pounds per ton.

The tables below will be useful in obtaining reagent feed rates and quantities used per day under varying conditions. The common method of measurement is in cc (cubic centimetres) per minute. The tables are based on one cc of water weighing one gram. A correction therefore will be necessary for liquid reagents weighing more or less than water. Dry reagents may be weighed directly in grams per min. which in the tables is interchangeable with cc per min.

In the table on the opposite page the 100% column refers to undiluted flotation reagents such as lime, soda ash and liquids with a specific gravity of 1.00. Ninety-two per cent is usually used for light pine oils, 27 per cent for a saturated solution of copper sulphate and 14 per cent for TT mixture (thiocarbanilide dissolved in orthotoluidine). The other percentages are for solutions of other frequently used reagents such as xanthates, cyanide, etc.

The action of promoting reagents in increasing the contact-angle at a water/mineral surface implies an increase in the interfacial tension and, therefore, a condition of increased molecularstrain in the layer of water surrounding the particle. If two such mineral particles be brought together, the strain areas enveloping them will coalesce in the reduction of the tensionary system to a minimum. In effect, the particles will be pressed together. Many such contacts normally occur in a pulp before and during flotation, with the result that the floatable minerals of sufficiently high contact-angle are gathered together into flocks consisting of numbers of mineral particles. This action is termed flocculation , and obviously is greatly increased by agitation.

The reverse action, that of deflocculation , takes place when complete wetting occurs, and no appreciable interfacial tension exists. Under these conditions there is nothing to keep two particles of ore in contact should they collide, since no strain area surrounds them ; they therefore remain in individual suspension in the pulp.

Since substances which can be flocculated can usually be floated, and vice versa, the terms flocculated and deflocculated have become more or less synonymous with floatable and unfloatable , and should be understood in this sense, even though particles of ore often become unfloatable in practice while still slightly flocculatedthat is, before the point of actual deflocculation has been reached.

Here is a ListFlotation Reagents & Chemicals prepared to present in brief form pertinent information on a few of the more common reagents now being used in the flotation of metallic and non-metallic minerals. A brief explanation of the headings in the table is as follows:

Usual Method of Feeding: Whether in dry or liquid form. A large number of reagents are available in liquid form and naturally are best handled in wet reagent feeders, either full strength or diluted for greater accuracy in feeding. Many dry reagents are best handled in solution form and in such cases common solution strengths are specified in percent under this heading. A 10% water solution of a reagent means 10 lbs. of dry reagent dissolved in 90 lbs. of water to make 100 lbs. of solution. Some dry reagents, because of insolubility or other conditions, must be fed dry. This is usually done by belt or cone type feeders designed especially for this service to give accurate and uniform feed rates.

Pasty, viscous, insoluble reagents present a problem in handling and are generally dispersed by intense agitation with water to form emulsions which can then be fed in the usual manner with a wet reagent feeder.

The performance of froth flotation cells is affected by changes in unit load, feed quality, flotation reagent dosages, and the cell operating parameters of pulp level and aeration rates. In order to assure that the flotation cells are operating at maximum efficiency, the flotation reagent dosages should be adjusted after every change in feed rate or quality. In some plants, a considerable portion of the operators time is devoted to making these adjustments. In other cases, recoverable coal is lost to the slurry impoundment and flotation reagent is wasted due to operator neglect. Accurate and reliable processing equipment and instrumentation is required to provide the operator with real-time feedback and assist in optimizing froth cell efficiency.

This process of optimizing froth cell efficiency starts with a well-designed flotation reagent delivery system. The flotation reagent pumps should be equipped with variable-speed drives so that the rates can be adjusted easily without having to change the stroke setting. The provision for remotely changing the reagent pump output from the control room assists in optimizing cell performance. The frother delivery line should include a calibration cylinder for easily correlating pump output with the frother delivery rate. Our experience has shown that diaphragm metering pumps of stainless steel construction give reliable, long-term service. Duplex pumps are used to deliver a constant frother-to-collector ratio over the range of plant operating conditions.

In most applications, the flotation reagent addition rate is set by the plant operator. The flotation reagents can be added in a feed-forward fashion based on the plant raw coal tonnage. Automatic feedback control of the flotation reagent addition rates has been lacking due to the unavailability of sensors for determining the quality of the froth cell tailings. Expensive nuclear-based sensors have been tried with limited success. Other control schemes have measured the solids concentrations of the feed, product, and tailings streams and calculated the froth cell yield based on an overall material balance. This method is susceptible to errors due to fluctuations in the feed ash content and inaccuracies in the measurement device.

A series of simple math models have been developed to assist in the engineering analysis of batch lab data taken in a time-recovery fashion. The emphasis is to separate the over-all effect of a reagent or operating condition change into two portions : the potential recovery achievable with the system at long times of flotation, R, and a measure of the rate at which this potential can be achieved, K.

Such patterns in R and K with changing conditions assist the engineer to make logical judgements on plant improvement studies. Standard laboratory procedures usually concentrate on identifying some form of equilibrium recovery in a standard time frame but often overlook the rate profile at which this recovery was achieved. Study has shown that in some plants, at least, changes in the rate, K, are more important relative to over-all plant performance than changes in the lab measured recovery, R. Thus the R-K analysis can serve to improve the engineering understanding of how to use lab data for plant work. Long term plant experience has also shown that picking reagent systems having higher K values associated can be beneficial even when the plant, on the average, is not experiencing rate of mass removal problems. This is due to the cycling or instabilities that can and do exist in industrial circuits.

It is also important to note that the R-K approach does not eliminate the need for surface chemistry principles and characterization. Such principles and knowledge are required to logically select and understand potential reagent systems and conditions of change in flotation. Without this, reagent selection is quickly reduced to a completely Edisonian approach which is obviously inefficient. What the R-K analysis does is to provide additional information on a system in a critical stage of scale-up (from the lab to the plant) in a form (equilibrium recovery and rate of mass removal) which are interpretable to the engineer who has to make the change work.

The influence of operating conditions such as pH, temperature of feed water, degree of grind, air flow rate, degree of agitation, etc. have been characterized using the R-K approach with clear patterns evolving.

The effect of collector type and concentration on a wide variety of ore types have been studied with generally rather clear and sometimes rather significant patterns in R and K. The quantitative ability to analyze collector performance from the lab to the plant using the R-K profiles has been good.

The effect of frother type on various ores has also been undertaken with good success in differentiating between the qualitative directions and effects involved. However, the actual concentrations required in plants have not, in at least some tests, been accurately predicted. Thus further work remains in this area but in almost all cases the qualitative information on frothers that has been gained has proven very valuable in test work as a guide.

flotation - metso outotec

Harness the power of our experience with Outotec flotation plants. With expertise based on over 100 years in flotation technology, and over 10,000 flotation cells installed around the world, Outotec has the experience you need to maximize your operations productivity and efficiency. We can deliver a complete life-cycle solution from test works and flow sheet development to implementation with proprietary and third-party equipment, as well as operation and maintenance services of the flotation plant.

serbia to become europes no. 2 copper producer thanks to cukaru peki mine - canadian mining journal

China-backed Serbia Zijin Mining, a wholly-owned subsidiary of Zijin, has obtained a permit from the Serbian government to start mining activities at the Cukaru Peki copper and gold mine, part of the Timok project, in the countrys east.

flotation machine for mineral & metallurgy - jxsc machine

Application copper sulfide, gold sulfide, zinc, lead, nickel, antimony, fluorite, tungsten, and other non-ferrous metals, and also be used for coarse selection for ferrous metals and nonmetals. Type Agitating flotation machine, Self-priming, aeration flotation, flotation column. ModelXJK, SF, GF, CHF, XJC, etc. Contact us for specific & quick selection.

Flotation machine (floatation machine, planktonic concentrator) in the mineral processing plant, mainly used for separating copper, zinc, lead, nickel, gold, and other non-ferrous metal. TypeXJK series agitation impeller flotation machine (Seldom used, small capacity); SF flotation machine (Larger volume, better flotation effect); Pneumatic flotation machine (aeration and agitation, high capacity). Corollary equipmentIn front: one or two sets of mixing tank for flotation agent agitation and slurry pulp agitation. Behind: concentrate pond, thickener or filter Flotation cell According to the ore grade, mineral type and processing capacity to choose, determine the number of the flotation cells. It is recommended that carrying out the mineral flotation tests to obtain the best procedure plan, like pulp density, time, reagent selection, etc. Flotation reagentfoaming agent, collecting agent, activating agent, inhibitor, etc. BrandsWemco flotation unit, Fahrenwald Denver, Callow, BGRIMM, etc. How to select mining flotation machine1. According to the nature of the ore (washability, feed particle-size, density, grade, pulp, pH, etc.) and flotation plant scale choose the appropriate flotation machine. 2. The concentration operation is mainly to improve the ore concentrate grade. The flotation foam layer should be thin so that separates the gangue. It is not appropriate to use a flotation machine with a large aeration volume. Therefore, there are differences between the froth flotation machine of concentration, roughing and scavenging. 3. JXSC engineer team here to help do flotation mining machine selection, price inquiry, flowsheet design.

Flotation machine structureThe metallurgist flotation mainly made up of slurry tank, mixing device, aeration device, mineralized bubble discharging device and motor. Flotation machine working principleFlotation process refers to the flotation separation in mineral processing. In the flotation machine, the ore slurry treated with the added agent, by aeration and stir, some of the ore particles are selectively fixed on the air bubbles and floats to the surface of the slurry and is scraped out. The rest is retained in the pulp, thus achieve the purpose of separating different minerals. The complete froth flotation process in metallurgy consists of rougher flotation, concentrate flotation and scavenging flotation. Flotation methodFroth flotation of sulphide ores, mainly have differential flotation and bulk flotation process, improve the flotation recovery rate of fine - particle. Flotation cell manufacturerJXSC specializes in the production of a full set of mineral processing equipment, and cooperates with the Mining Research Institute to design a scientific and reliable mineral processing flowsheet, supply gold flotation, copper flotation, zinc flotation, and the like ore flotation units.

flotation mining equipment | apt trifloat appropriate process technologies | mineral processing plants

Host of benefits in the design; better mixing in slurry applications, resulting in greater efficiency for reactions and a greater uniformity within the tank. This results in fast flotation kinetics and better recoveries over conventional systems.

The cells can be arranged in various configurations depending on the mineral, throughput and float characteristics of the operation, allowing a TriFloat tank to be used as a complete rougher, cleaner and scavenger system, or for any portion of this circuit.

flotation machines & flotation cells

In small plants, it is common practice to include conditioners following the last stage of grinding. Additional conditioners are normally required between flotation operations which produce individual mineral concentrates. Each conditioner stage should consist of a minimum of two separate agitated tanks. Provision must be made to drain and clean conditioner tanks to appropriate flowsheet locations. This is particularly important in the case of conditioners which follow the grinding circuit since these tanks tend to accumulate oversize material produced during grinding circuit upsets.

Conditioners provide positions in the plant flowsheet wherein changes to the ore slurry are brought about by the addition of reagents and pH modifiers. Conditioners must always be designed to provide adequate time for chemical or physical changes induced by reagent additions to proceed to completion. Conditioners also serve a useful function in that swings in ore grade, particle size distribution, or other flotation variable tend to be partially homogenized and dampened during the conditioning unit operation. For example, in small installations it is not unusual to experience wide swings in feed grade. The conditioning unit operation provides the operator an opportunity to modify reagent additions in order to maximize recovery during periods of process instability. If possible, conditioner tanks should be arranged in tiers so that slurry overflows between sequential tanks under the influence of gravity.

The selection of flotation cell size and configuration can have a substantial influence upon installed cost and can contribute to operational efficiency. Two possible flotation configurations for a 500 metric ton per day installation are presented in Figure 5. The computational basis assumes 30 percent solids in rougher flotation, 20 percent solids in cleaner, recleaner and cleaner-scavenger flotation, a ratio of concentration in rougher flotation of 3.07 an overall ratio of concentration of 5.0, and an ore specific gravity of 2.9. This representation indicates that the flotation bay layout employing the larger flotation cells, in this case 2.83 cubic meter (100 cubic feet) machines, occupies less area and reduces installed capital cost by about 25 percent. However, there are instances when the first illustration (selection of small flotation cells) would be chosen for reasons of compactness and symmetry.

Complex multiple product flotation installations usually require a high degree of sophistication regarding operational control. Many times, in small flotation concentrators this level of sophistication is not available. If the facility is located in a remote area, experienced operational personnel may be impossible to acquire. Consequently, the flotation circuits should be as simple as possible. For an installation producing a single mineral product, the flotation scheme illustrated in Figure 6 is recommended. This system, which is compatible with configuration 2 on Figure 5, is simple to operate and eliminates the build-up of a large circulating load of scavenger concentrate. This system is also flexible in that various produced concentrates can be subjected to regrinding should changes in mineralogy or primary grind so dictate.

It must be recalled that the weight of rougher and cleaner concentrates produced from high-grade ores can be substantial. Provision to remove froth by the use of froth paddles on all flotation cells should be included in the original design. The additional capital cost required for froth paddles is a reasonable investment since these devices tend to negate errors in flotation pulp level or frother addition. The open circuit flotation system presented can be operated by individuals having minimal training. The advice of Taggart regarding the inclusion of a small pilot table as a visual sample on rougher tailings is still legitimate.

In almost all new flotation installations, the use of launders fabricated from sheet rubber is recommended. Care must be taken to insure that all launders are sloped properly. In addition, launders must be provided with appropriate sprays and sluice lines to facilitate concentrate transport. The launder water system must be carefully designed to insure functionality without excessive concentrate dilution.

In recent years it has become popular to use vertical pumps for both concentrate and tailing transport in smaller circuits. It is usually possible to employ only one, or at the most two, pump sizes for all of the required flotation pumping installations. The same size vertical pump may also be used in various locations about the plant for cleanup duty. The usage of vertical pumps reduces seal water requirements, and eliminates concrete pump bases, fabricated sumps, and the valving associated with horizontal pumps.

For the past 35 years Sub-A Flotation Machines have been serving faithfully in all parts of the world. Anniversaries of progress such as this make reminiscing very interesting and we thought you would enjoy seeing some of the Firsts in the flotation machine industry as pioneered by the Sub-A.

1928was a pioneer in the use of V-belt drives in the flotation industry. This high-head machine also had wide-spaced greaseless lower bearings. At one time this was the largest flotation machine in the world.

1930 First steel tank flotation machine. Earlier machines had wood tanks. Steel tanks met great opposition at first, later became standard. This high-head, all-steel Sub-A marked the introduction of anti-friction lower bearings.

1932 First low-head flotation machine marked a radical departure from the then accepted principle that the space between bearings must be greater than the distance beyond the lower bearing. This machine was of the cell-to-cell pulp flow design and used a quarter-turn flat belt line-shaft drive.

1933 First steel tank low-head, low-level flotation machine. It had an individual motor and a V-belt drive. This design became very popular with mill operators and thousands of cells were sold similar to those pictured above.

Laboratory Flotation Machines have made progress, too. In our early days the cast-iron tank machine with its round-belt mule drive was the latest word. Contrast it with todays modern Sub-A Laboratory Flotation Machine with its heavy glass tank and stainless steel parts.

1961 Todays demands for Sub- A Flotation Machines keep our modern factory busy. Today more Sub- A Flotation Machines are specified than all competitive makes and is the unquestioned First Choice in Flotation.

small flotation machines

These ALL STAINLESS STEEL flotation machines are used to form banks of 2 cells. The can be arranged in series to accommodate small plants of up to 1 TPH (24 Ton/day). View the description below for a flotation cell capacity table you can use to estimate how many machines you need.

Look at the capacity you need in KPH (kilo/hour) or TPD (ton/day) and look for a number of machines, ideally, between 2 and 8. From this, select what cell size (volume) gives you that quantity of machines to form your flotation bank and circuit.

FX Model Continuous Mechanical Flotation Machine is applicable to separation of minerals with float-free method in labs. It is a unit of several combinations of two cells with number of the cell being even, varying from two to ten cells. Left or right type flotation machine can be supplied as required by customer.

To adjust the level of slurry in the cell and the thickness of the scraped froth layer, use wall plates of the two cells to make intermediary cell;install slurry level regulator; and mount orifice plate onto the cover in the cell to avoid negative effects on the froth zone exerted by the chaotic motion of slurry, as well as to avoid the gangue from being taken into the concentrate by the machine.

Lining plates are installed at the cell so that the bottom of the cell will not be abraded. The lining plate can be replaced. On the outside of the cell bottom is a discharge mouth, which is used to discharge water during its cleaning. The slurry flows through the overflow mouth of wall panel into the intermediary cell and tail cell. It flows to the lower part of the intermediary cell and the duct covered by the lower part of the cell wall and then to the next cell. In this way, it can continue to flow through all the cells of flotation machine. It flows from the feed cell and is discharged from the discharge mouth of the tail cell. The front and back of the lower part of the cell is installed feeding mouth, to make it easy to change the process flow.

The impeller system is a disk impeller which is installed in the center of the cell in the flotation machine and whose blades are radially arranged. It is fixed onto the lower end of the impeller shaft and revolves around the vertical shaft pipe.

The upper end of the pipe lies above the pulp stone and the froth layer while its lower end is supported on the cover. When the impeller rotates, a large amount of air can be sucked along the vertical pipe. Below the cover is fixed protective disk. The gap between the safety disk and the impeller depends on the amount of sucked air. It can not be larger than 3mm at most. When the gap is too large, replace the abraded protective disc and make appropriate adjustment.The holes in the vertical pipe are used to circulate slurry as well as mix the slurry and air. The rolling shaft installed inside the bearing shell above the impeller shaft rotates. The bearing shell is installed on the crossbeam and belt pulley is fixed on the top of the shaft which rotates through the V-belt when the motor is turned on. The tension of the V-belt is adjusted through the nuts.

The froth is scraped along the flotation machine through rotary scraper. The scraper is installed outside the discharge mouth of cell. At one end of the scraping shaft is installed belt pulley which rotates through the drive of worm reducer and V-belt.

flotation, froth flotation, flotation cell, froth flotation separation - xinhai

Xinhai is a professional R & D and production manufacturer of flotation cells, and has passed ISO9001:2015 international quality management system certification. Xinhai froth flotation separation is sold all around the world.

High-quality equipment manufacturing capabilities, focusing on the research and development and innovation of mineral processing equipment, extending the stable operation time of the equipment, and providing cost-effective services.

flotation machines | mineral processing machine & solutions - jxsc

Flotation is the most widely used beneficiation method for fine materials, and almost all ores can be separated by flotation. Another important application is to reduce ash in fine coal and to remove fine pyrite from coal. The flotation machine is mechanical equipment for realizing the froth flotation process and separating target minerals from ore. At present nearly 2 billion tons of ore in the world are treated by the froth flotation process. According to rough statistics, about 90% of non-ferrous minerals are recovered by the flotation method, accounting for 50% proportion in the field of ferrous metal mineral separation.

Suitable material Sulfide minerals, oxide minerals, non-metallic minerals, silicate minerals, nonmetallic salt minerals, soluble salt minerals, rare earth minerals, etc., including gold, silver, copper, lead, zinc, galena, zinc blende, chalcopyrite, pyroxene, molybdenite, nickel pyrite, malachite, cerussite, smithsonite, hematite, cassiterite, wolframite, Ilmenite, beryl, spodumene, brimstone, graphite, diamond, quartz, mica, feldspar, fluorite, apatite, barite, and so on.

The flotation machine is composed of single or multiple flotation cells, by agitating and inflating the chemical reagent treated slurry, some mineral ore particles are adhered to the foam and float up, and then be scraped out, while the rest remains in the slurry.

Industrial flotation machines can be divided into 5 classes, mechanical agitation flotation machine, pneumatic flotation machines, flotation column, airlift flotation machine, froth separation flotation machines. At present, the mechanical flotation machine is the most commonly used in industry, followed by the column flotation which has recently set off hot spot, the pneumatic type and froth separation are not common.

Commonly used flotation models TankCell series, Wemco series, Agitair series, SuperCells, RCS(reactor cell system), Denver laboratory flotation, KYF, and XCF series flotation devices, laboratory flotation machine. Well-known flotation machine manufacturers have Outotec, Flsmidth, Metso, BGRIMM, JXSC flotation machine china; column flotation manufacturers or models have Jameson, CPT, Counter-flow inflatable flotation column.

Main parts: slurry tank, agitator device, mineralized froth discharging system, electromotor, etc. 1. Slurry tank: mainly consist of a slurry inlet, slurry tank and a gate device for controlling the slurry volume, welded with steel plate. 2. Agitator: slurry tank have a series of the mechanically driven impeller that disperses the air into the agitated pulp. 3. Mineralized forth discharging: the useful minerals are enriched in the foam, scraped out, dehydrated, and dried into concentrate products.

Whatever flotation machines design is selected, it must accomplish a series of complicated industrial requirements. 1. Good mixing function. a qualified flotation machine should mix the slurry uniformly and maintain the particles especially the target mineral particle in suspension with the pulp, maximum the froth-mineral probability. 2. Adequate ventilation and distribution of fine bubbles. Except for the flotation machine performance, the frother type and dosage also matter to the distribution of the bubbles. 3. Appropriate agitation control in the froth beds. It is should pay importance to keep froth zones smoothly, which ensures the suspension of collector coated particle.

1. The throughput capabilities of various cell designs will vary with the ore property (beneficiability, size, density, grade, pulp, PH, etc.). In the case of ore easy separated, and a small amount of air inflation required, may choose a mechanical flotation machine; if the minerals with coarse size, proper to choose the KYF, BS-F, ore CLF type; what's more, when in case of ore easy separated, fine particles, high grade, low PH, flotation column is the best, especially in the concentrating process. 2. There is a difference between the process of concentrating, rough selecting. Thin froth layer is better for separate mineral particles, thus may not choose a large air inflation flotation machine.

Mining Equipment Manufacturers, Our Main Products: Gold Trommel, Gold Wash Plant, Dense Media Separation System, CIP, CIL, Ball Mill, Trommel Scrubber, Shaker Table, Jig Concentrator, Spiral Separator, Slurry Pump, Trommel Screen.