hydraulic cone crusher enchant

what is a hydraulic cone crusher? - hongxing machinery

When the cone crusher works, the rotation of the motor is performed by a pulley or coupling, the cone crusher transmission shaft and the crusher cone under the force of an eccentric sleeve to make a swing motion around a fixed point. Therefore, the crushing wall of the crushing cone is sometimes close to and sometimes away from the surface of the mortar wall fixed on the adjusting sleeve, so that the ore is continuously impacted, crushed and bent in the crushing cavity to achieve the ore crushing. The motor drives the eccentric sleeve to rotate through the bevel gear to make the crushing cone rotate, which accomplishes the crushing work when the crushing cone is sometimes near and away from the fixed cone. The connection between the support sleeve and the frame is compressed by a spring so that when an unbreakable object such as a metal block falls into the crusher, the spring will compress and deform to evacuate these objects and achieve insurance to prevent the machine from damaging. If the foreign matter is stuck in the ore discharge, it can be solved by expanding the discharging port and then the cone crusher is automatically reset by the spring to resume normal work.

This hydraulic system controls the movement of 3 basic circuits. One is the action of the fixed cone hydraulic locking hydraulic cylinder, the second is the hydraulic motor that adjusts the gap between the moving and fixed cone. The third is the way of the hydraulic cylinder when the iron is released and cleaned. The lock cylinder is installed between the lock ring and the adjustment ring. It can support the lock ring located on the upper part of the adjustment ring to ensure that the fixed cone is located in the broken position in the adjustment ring when the hydraulic cylinder is pressurized during the crushing process. When the gap between the moving and fixed cones needs to be adjusted, the pressure of the locking hydraulic cylinder is released, and the motor on the adjusting ring starts to start. The gear on the motor engages the driving ring with the adjusting cap to realize the automatic adjustment.

The iron release cylinder is connected to the lower part of the mainframe and is fixed with the adopt to overcome the normal braking force. Abnormal operation or excessive crushing force generated by the foreign object as it passes through the crusher cause the adjustment ring to rise. Once the overload disappears or iron passes through the crusher, the crusher returns to normal. Besides, to clean the crusher, the adjustment ring needs to be removed from the mainframe.

This hydraulic system uses a fixed displacement plunger pump as the power source, that is to say, it converts the mechanical energy supplied by the prime mover into the pressure energy of the working medium (hydraulic oil). During this period, each hydraulic valve controls and regulates the pressure, flow, and direction, to ensure that the execution part (each hydraulic cylinder and motor) to complete the predetermined law of movement. The maximum pressure of the electromagnetic relief valve adjustment system in this circuit is 20MPa. The locking circuit is controlled by accumulator pressure and zero leakage solenoid valve. Because the lock cylinder is always in a pressure-maintaining state during the working process, the use of an accumulator to maintain pressure can prevent the plunger pump from starting and stopping frequently. The locking cylinder is a plunger cylinder so that the zero-leakage solenoid valve is reset by the weight of the support part after the pressure is released.

Adjust the motor circuit by using a shuttle valve to control the motor running and stopping. Due to the working nature of the host, the motor needs to have a brake function. Therefore, the shuttle valve is used to control the brake of the motor. Thus, the motor can realize the function of oil-braking and oil-cut braking. Accumulators are used to absorbing shocks in the iron release and cleaning circuits. Due to abnormal operation or excessive crushing force generated by the crusher when the main machine is working, the adjustment ring rises upward. When the adjustment ring rises, the hydraulic oil in the upper cavity of the hydraulic cylinder will be squeezed into the accumulator, then the nitrogen in the accumulator is compressed. After that, the compressed nitrogen forces the hydraulic oil to return to the hydraulic cylinder, and the piston rod of the hydraulic cylinder is retracted, and the adjustment ring is returned to the original position. This circuit uses an accumulator to absorb shocks easily, easily and reliably.

The most common types of hydraulic cone crushers are single-cylinder cone crusher, multi-cylinder cone crusher, and fully hydraulic crusher.SCseries single-cylinder hydraulic cone crusher is developed with advanced crushing technology, integrating mechanical, hydraulic, electrical, intelligent control, etc.Thesingle-cylinder hydraulic cone crusherhas a new crusher structure, optimized laminated crushing cavity type, and a fully intelligent automation control system. In general, itcan be widely used in medium crushing, fine crushing, and ultra-fine crushing operations.

Multi-cylinder hydraulic cone crusher is suitable for crushing various ores and rocks with medium or higher hardness, such as limestone, iron ore, cobblestone, non-ferrous metal oreand so on.Its high speed, high crushing capacity, and unique patented design make the crushed finished producta high-quality cube shape, and the easy maintenance feature can ensure its high stability operation.

The full-hydraulic cone crusher is a new cone crusher that combines advanced multi-cylinder hydraulic cone crusher and PSG cone crusher. This machineadopts advanced design concepts and is optimized and designed. The fine-grained content in the crushed product is higher, and the content of the granules smaller than the closed-side discharge can reach 80%, which can significantly improve the processing capacity of subsequent processes and reduce comprehensive energy consumption.

The successful combination of high-performance crushing cavity type and high crushing frequency has greatly improved the processing capacity of the machine. Due to the principle of lamination crushing, the crushed products are mostly cubic structures, which greatly reduces needle-shaped materials.

hydraulic cone crusher for hard stones | fote machinery

Applied Materials: stone, aggregate, gravel, limestone, quartz, basalt, iron ore, gold ore, etc. The automatic hydraulic system provides safety and setting-adjustment functions. This cone crusher also makes the ways of monitoring and maintenance much simpler and eaiser.

Multi-cylinder hydraulic cone crusher is the world's advanced level cone crusher developed on the basis of the latest technology introduced from Germany, which not only improves productivity and efficiency, but expands the scope of application.

Multi-cylinder hydro cone crusher has an unmatched level of crushing performance in general crushing, fine crushing and superfine crushing of various materials from limestone to basalt, from stone production to a variety of ore crushing.

Multi-cylinder hydraulic cone crusher is the latest generation of cone crusher which can replace spring cone crusher and update general hydraulic cone crusher in today's mining industry, and it is the ideal crushing equipment for large stone plant and mining crushing.

High efficiency: Both ends of the multi-cylinder hydraulic cone crusher have spindle support, so it's able to withstand greater crushing force and greater stroke. If added with special crushing cavity adapting lamination principle, the machine has higher efficiency.

The machine has a perfect design combination of crushing stroke, crushing speed and crushing cavity shape, which makes the machine have 35%~60% higher output than the old spring cone Crusher in case of the same fixed cone diameter.

The multi-cylinder hydraulic cone crusher uses special crushing cavity, as well as the principle of laminated design, so that the cube proportions of finished product is significantly increased, with less needle-shaped stones and more evenly particle levels.

Hydraulic overload system can enlarge discharge hole to discharge obstruction when the machine is jammed, so it plays a positive role as insurance and significantly reduces maintenance and increases productivity.

As a leading mining machinery manufacturer and exporter in China, we are always here to provide you with high quality products and better services. Welcome to contact us through one of the following ways or visit our company and factories.

Based on the high quality and complete after-sales service, our products have been exported to more than 120 countries and regions. Fote Machinery has been the choice of more than 200,000 customers.

symons cone crusher

For finer crushing or reduction a Symonscone crusher the norm. Symons are commonly used for secondary, tertiary or quaternary crushing. They do this by a different chamber design which is flatter and by operating at about twice the rotational speed of a primary type gyratory crusher.

One of the first cone crushers had a direct drive vertical motor mounted above the spider with the drive shaft passing through the hollow bored main shaft. With relatively high speeds of 480 to 580 rpm and small eccentric throw, the machine produced a uniform produce with minimum fines.There are numerous Symonscone crusher manufacturers of modern crushers each promoting some unique aspect.

The Allis Chalmers Hydrocone selling point is its adjustability and tramp protection through a hydraulic support system for the headcentre. By merely adjusting the oil reservoir below the head centre the crusher setting can be changed while in full operation. Tramp metal causes a surge of pressure in this hydraulic system which is absorbed through relief valves and gas-bladder-filled accumulator bottles which allow the headcentre to momentarily drop and return to its normal operating position when the tramp has fallen through.

The Symons or Rexnord spring cone crusher is adjusted by spinning the bowl up or down manually or through hydraulic rams. A series of powerful springs give the necessary tramp protection. Several other manufacturers produce similar types and sizes of crushers but all follow the basic types described.

When the Symons brothers Invented the cone crusher, they employed the principle wherein the length of the crushing stroke was related to the free fall of material by gravity. This permitted the material being crushed to fall vertically in the crushing chamber; and in effect, caused the particles to be crushed in a series of steps or stages as the particles got smaller due to the crushing action. This also helps to reduce the rate of wear of the liners since the sliding motion of the particles is minimized.

Recognizing that the Symons principle of crushing is the most efficient means of ore and aggregate reduction in hard rock applications, the engineers used this same principle in the design on the hydrocone.

Versatility in the form of having the ability to perform in a wide range of applications without the need for a change in major assemblies was another objective in the design. Ease of maintenance and remote setting capability also were part of the design parameters the market requires.

There is no startling revelation to the fact that the mining industry as a whole is generally moving toward the use of larger equipment to process ores in quantities far greater than what was even considered a decade ago. Trucks and shovels have led the way in extra large machines and many other manufacturers have followed suit in the development of so-called supers in their line of equipment.

In order to keep pace with the industry, crusher manufacturers have also enlarged the size of their equipment. There is now on the market, a Gyratory crusher capable of accepting a 72 diameter piece of ore. Primary jaw crushers have also increased in size. It is inevitable, therefore, that larger secondary cone crushers would also be required to complement the other equipment used to process these large quantities of ore. This super-size secondary cone crusher is the SYMONS 10 Ft. Cone Crusher.

Until 1973, the largest cone crusher built was the 7 Ft. Extra Heavy Duty crusher, which is currently used in the majority of the mining operations throughout the world. The 10 Ft. crusher, when compared to the 7 Ft. Extra Heavy Duty Crusher, is approximately 1 times larger in physical dimensions; three times heavier; will accept a maximum feed size which is approximately twice as large; and will crush at approximately 2 times the rate of the 7 Ft. machine at identical closed side settings. It will be the largest cone crusher built in the world.

The conclusions of this investigation were all positive the crusher could be built and at a cost that would be in line with its size and capacity and also with other size crushers. After that preliminary study, the project became dormant for several years.

The project was reactivated and this time general assembly drawings were made which incorporated many improvements in the crusher such as pneumatic cylinders in place of the conventional, springs for tramp iron release, a two-piece main frame a dynamically balanced design of the internal moving parts of the crusher, and an automatic clearing and adjusting mechanism for the crusher. At this stage of development we felt we were ready to build a 10 Ft. crusher for any mine that was willing to try one. Unfortunately, the conservative posture of the mining industry did not exactly coincide with our sales plans. This, added to the popularity of the autogenous mill concept at the time, led to another lull in the 10 Ft. development program.

The project was reactivated again in 1970, this time primarily at the request of one of the large Minnesota Iron Range mining companies. We then undertook a comprehensive market research study to determine if there was a need for this size crusher by the mining industry in general, rather than just the iron ore industry. We talked not only to the iron ore people but to the copper people and persons connected with the other metallic ores as well. The acceptability of this large crusher was also discussed with the aggregate industry. After interviews with many of the major mining companies, the decision was made to complete the entire engineering phase of the development program and to actively solicit a customer for this new crusher. We spent approximately $85,000 on engineering work and tests on the gamble that we could find a customer. I speak of a gamble because during our market research study we continually were told my company would be very interested in buying a 10 Ft. crusher, but only after we have seen one in operation.

The actual building and test of the first prototype unit without a firm commitment for a sale was an economic impossibility. We were now at the point where we needed to sell at least one unit in order to prove not only the mechanical reliability of the machine, but the economic justification for its purchase as well. Needless to say, when the order for two SYMONS 10 Ft. cone crushers was received, we felt we were now on the way toward completion of the development program.

Perhaps at this point it might be apropos to examine the crusher itself. It will stand 15-6 above its foundation, the overall height will be 19-4-. At its greatest diameter, in the area of the adjustment ring, it will be approximately 17-6. It will weigh approximately 550,000 lbs. Under normal crushing conditions, the crusher will be connected to a 700 HP motor. A 50 ton. overhead crane is required to perform routine maintenance on this crusher.

The main shaft assembly will weigh approximately 92,000 lbs. and the bowl assembly approximately 95,000 lbs. The mantle and bowl liner, cast from manganese steel, will weigh approximately 13,000 lbs. and 25,000 lbs. respectively.

The throughput capacity of the Standard will be approximately 1300 TPH at a 1 closed side setting and 3000 TPH at a 2- closed side setting. The throughput capacity of the SHORT HEAD will be approximately 800 TPH at closed side setting and 1450 TPH at a 9/16 closed side setting.

Persons familiar with the design of a conventional 7 Ft. SYMONS cone crusher will recognize that the design of the 10 Ft. is quite similar to it. As a matter of fact, we like to say that the design of the 10 Ft. is evolutionary rather than revolutionary, because all the reliable features of the SYMONS cone crusher were retained and the only changes that were made were those that added to the convenience of the operator, such as automatic clearing and automatic adjustment. From a mechanical point of view the stresses generated due to crushing loads are less in the 10 Ft. crusher than in the existing 7 Ft. Extra Heavy Duty cone.

One of our senior engineers who has long since retired told me that he had the occasion many years ago to make a presentation of a newly designed crusher to a prospective customer. He carefully prepared a rather detailed description of the crusher which included all the features that his new machine had when compared to the customers existing machine. The presentation itself took about one hour and after that period the customer leaned back in his chair and said, Thats all well and good, but will it crush rock? In effect, the customer was; saying that all the features in the world were of no use to him if the crusher did not perform its basic function to crush rock and ultimately make profits for the owner. Using todays financial terminology he was asking the engineer to economically cost justify the purchase of the crusher.

The working day of the contemporary manager or project engineer evolves around making decisions to economically justify a piece of equipment or a new operation. In our development program of the 10 Ft. cone crusher, we felt that the economic justification, from the customers point of view, was just as important to develop as the engineering aspects of the program. So we developed a three-part program to examine the economics of installing a 10 Ft. crusher. First we talked in wide generalities concerning the use of a 10 Ft. crusher. Secondly, we discussed the ramifications of using a 10 Ft. crusher versus 7 Ft. crushers in a completely new plant being considered for the future. Thirdly, we examined how a 10 Ft. crusher could be used to its best advantage in a plant that is being expanded.

The first consideration was the economic generalities of installing the crusher, or more specifically, what questions regarding the installation are pertinent to every crushing plant. Usually, the initial comparison which is made between a 7 Ft. crusher and a 10 Ft. crusher is that of price versus capacity. Theoretically, the capacity of a 10 Ft. crusher is 2 times that of a 7 Ft. while the selling price is approximately 3 times that of the 7 Ft. On that basis alone, it would appear that the 10 Ft. could not be justified. However, this is an incomplete picture. Recent cost estimates show that considerable savings are realized when the entire physical plant structure is considered. Because fewer machines are required to crush an equivalent amount of ore, the size of the buildings can be reduced, thereby decreasing the capital investment of buildings and allied equipment used as auxiliaries for the crusher.

Total manpower requirements to operate and maintain the plant is another of the generalities which were considered. Fewer crushers normally require less personnel to operate and perform maintenance, Manpower requirements obviously play a large part in the profitability of a plant. Therefore, it follows that using a 10 Ft. in place of multiple 7 Ft. units should be more profitable from the standpoint of manpower. We should, however, clarify one point regarding normal maintenance of the 10 Ft. crusher which is commonly misunderstood; namely, the periodic changeout of manganese liners in the crusher. The normal time period between manganese changes would not be significantly different between the 7 Ft. and a 10 Ft. because the wear rate, that is, the pounds of liner worn away per ton of ore crushed, will remain the same. Consequently, if a set of liners in a 7 Ft. crusher, lasted six weeks, a 10 Ft. crusher in the same operation would also last approximately six weeks. However, since the total amount of ore crushed will be greater, the maintenance costs per liner changeout will be less on the 10 Ft. crusher.

Another point for consideration is that the 10 Ft., cone crusher is a secondary crusher and normally would be fed with the product of a gyratory crusher. Since the 10 Ft. can accept a larger feed than a 7 Ft. crusher, it is possible to increase the open side setting of a gyratory crusher, thereby, allowing a greater volume of feed to pass through the crusher. Because of this, it is conceivable that a smaller primary crusher could be used in order to obtain a given quantity of ore.

A good salesman could expound on a multitude of ideas for using 10 Ft. crushers in place of 7 Ft. crushers in a new plant, but in the final analysis, the deciding factor as to whether or not the 10 Ft. crushers should be used will be the anticipated over-all plant capacity. Several studies have indicated that as a general rule of thumb the break even point for using 10 Ft. crushers in place of 7 Ft. crushers is a plant which will have an overall ore treatment capacity of approximately 40,000 TPD or approximately 8,000,000 TPY. Anything less than that figure should indicate the use of conventional 7 Ft. crushers. Obviously a small four stage crushing plant in which the third stage crusher was a 7 Ft. Standard and the fourth stage consisted of two 7 Ft. SHORT HEAD cone crushers, would not improve economically by the use of one 10 Ft. Standard cone crusher and one 10 Ft. SHORT HEAD cone crusher in place of the 7 Ft. crushers.

A study was made which considered a plant to be built using three different approaches of a conventional crushing-grinding operation. The plant which was being considered would be crushing taconite similar to that found in the Iron Range. The end product of the crushing was 5/8 rod mill feed and in this example the plant capacity was to be approximately 13.5 million TPY of ore processed to eventually produce approximately 4 million TPY of iron ore pellets. The study arbitrarily chose a four-year period of operation so that operating costs would be included and also because a four-year period is the usual comparison basis for calculating return on investment. In this example the primary crusher as well as the fine crushing plant would be operated fourteen shifts per week.

In our economic analysis of the 10 Ft. crusher development program, we also studied how this crusher could be used to best advantage when planning expansion of an existing plant. Before delving into the actual dollars and cents of several variations of expansion plans, several preliminary questions must be answered in the affirmative:

Since each plant is unique, the relative merits of the 10 Ft. crusher must be examined on an individual plant basis. Again, as a general rule of thumb, it has been found that the most benefit can be achieved in those plants which presently contain a four-stage crushing plant in which the first two stages of crushing are gyratory crushers. Studies have shown that converting the second stage gyratory crusher to a 10 Ft. Standard crusher shows most potential because the major auxiliaries required for the crusher, such as crane, conveyors, etc., are already large enough to accommodate the increased capacity of the 10 Ft.

As one possible solution, we suggested that the two 30 x 70 secondary gyratory crushers be replaced by two 10 Ft. Standard cones. These crushers could then send approximately 3600 TPH of minus 3 material to the fine crushing plant. The two existing 7 Ft. Standard crushers could be converted easily to SHORT HEAD crushers and two new 7 Ft. SHORT HEAD crushers added to the existing vacant foundations.

In Summary, we feel that the Symons cone crusher has a very definite place in the future of the mining industry and we intend to move steadily ahead with its progress. However, we have learned a few lessons along the way.

Initially, the development of these super size machines is an extremely expensive proposition. We know that if our company alone, attempted to completely design, manufacture, erect, and test a machine in this size range, it would severely tax our financial resources.

We found that super size equipment also presents some problems for our manufacturing facilities. The manufacture of one of these units puts a large dent into the production schedule of many of the smaller conventional units. In our enthusiasm to build a bigger newer machine, we continually remind ourselves that the smaller conventional units are still our bread and butter units.

On the positive side, we found that our reputation as a crusher manufacturer was enhanced because of what our customers refer to as progressive thinking. We listened to the suggestions of the mining industry in attempting to give them what they wanted.

Perhaps you will allow me to close with a bit of philosophizing from a manufacturers point of view. The 10 Ft. crusher is here ready to go into operation. Where do we go from here? A 15 Ft. cone crusher? A 20 Ft. cone crusher? Who knows? We do know that we have reached the financial limit of a development program on a machine of this size. We also know that as the size of a machine grows larger, the developmental and manufacturing risks grow larger along with it and any allowable margin for error must be minimized. We, like you, are in business to make a profit. Since larger crushers usually mean a fewer number of crushers, we must examine the profit picture from aspects of the sale. I think I speak for other manufacturers as well when I say that bigness in machines reflects bigness in development costs as well. If the mining industry wants still larger equipment in the future, the industry should prepare itself to contribute to the development program of those machines.

A multi-cylinderHydraulic Cone Crusher, theHydrocone Cone Crushercan be used in either the second or third stage of crushing by merely changing liners and adaptors.It can produce the full product range that the combination of a comparable sized Standard and Short Head can produce. It makes the machine much more versatile. It allows for much more standardization. The value of this feature is one where spare parts investment in the form of major assemblies is minimized.

All operator controls are conveniently mounted on a remote control console to eliminate the need for an operator to approach the crusher during operation.Over a period of years we have developed a unique engineering knowledge about the effects of cone crusher design parameters such as speed, throw and cavity design on crusher productivity.

Each Hydrocone Cone Crusher features dual function hydraulic cylinders that provide overload protection and a safe and fast way to clear a jammed cavity. Should the crusher become plugged, the operator merely pushes levers on the remote control console to clear the cavity.

It can produce the full product range that the combination of a comparable sized Standard and Short Head can produce. It makes the machine much more versatile. It allows for much more standardization. The value of this feature is one where spare parts investment in the form of major assemblies is minimized.

All operator controls are conveniently mounted on a remote control console to eliminate the need for an operator to approach the crusher during operation.Over a period of years we have developed a unique engineering knowledge about the effects of cone crusher design parameters such as speed, throw and cavity design on crusher productivity.

Each Hydrocone Cone Crusher features dual function hydraulic cylinders that provide overload protection and a safe and fast way to clear a jammed cavity. Should the crusher become plugged, the operator merely pushes levers on the remote control console to clear the cavity.

TheHydraulic Cone Crusheruses hydraulic tramp release cylinders and accumulators to hold the adjustment ring against the main frame seat. There is only one angular surface between the main frame and the adjustment ring which also has a radial contact point in the lowermost area. When a piece of tramp goes through the crusher, the oil is forced into the accumulators allowing the adjustment ring to raise and pass the tramp.

The tramp release cylinders are secured to the adjustment ring and the lower portion of the main frame through clevises. This allows the crushing forces to be transferred directly from the frame arm locations to the adjustment ring. This relieves the main frame shell and upper flange from carrying heavy loads.

The Hydraulic Cone Crusher is equipped with hydraulic clearing. The tramp release cylinders which hold the adjustment ring in place are double acting cylinders. These cylinders can be pressurized in the opposite direction, after the clamping pressure has been released, to raise the adjustment ring and bowl assembly for clearing; only the weight of the adjustment ring, clamp ring, and bowl assembly, plus any residual material in the bowl hopper raises.

cone crusher, smh cone crusher, hydraulic cone crusher - shanghai sanme mining machinery corp., ltd

SMH series hydraulic cone crusher is a high-performance cone crusher. By optimized combination of the rotation rate, stroke and the crushing cavity, it realizes the laminated crushing and improves the yield greatly.

The mantle of the same diameter, the crushing stroke longer, larger crushing ratio, high output, low energy consumption;The effect of laminated crushing under full load makes particle-size distribution more steady, shape of product (cubic) more excellent.

SMH Series Cone Crushers adopt hydraulic locking and overload protection. When something which cannot be broken enters into the crushing chamber, hydraulic system will release the impact force smoothly to protect the crusher, and it can get back to the former discharging setting after the foreign material getting through, which can prevent block of the crusher.

When SMH series hydraulic cone crusher works, the motor drives the outer copper rotate through V-belt, host pulley, drive shaft, a small bevel gear, a large bevel gear. The outer copper forces crushing cone shaft axis of the outer copper to make rotating swing, making crushing surface sometimes near and sometimes leave the concave surface, so that the material is impacted, squeezed and bent in the ringlike crushing chamber consist of fixed cone and movable cone. After repeated squeezed, shocked, and bent, the material crushing to the required particle size is discharged from the lower part.

The particular crushing chamber adopting principle of intergranular lamination and matching rotor speed obviously improves the crushing ratio and productivity, largely increase the amount of cubic final product.

Adopting hydraulic protection and hydraulic cavity clearing, high degree of automation, the hydraulic system can be up top and discharge automatically when the crusher is blocked instantly or over-iron, which eliminates trouble of halting to clear the material manually. It makes the maintenance more easier, cost lower.

hpt hydraulic cone crusher,high efficiency hydraulic cone cru - liming(shanghai)

HPT series high efficiency Hydraulic Cone Crusher is a world-level cone crusher developed from the up-to-minute technology of Germany. Unique interparticle crushing action, Advanced hydraulic system, Integration of the hydraulic station and lubrication system,Advanced liner retention technology,Much more reliable.The cone crusher s motor drives the horizo...

The crushing principle of Hydraulic Cone Crusher is finished between fixed cone plate and movable cone plate. The cone crusher s motor drives the horizontal axis of the cone crusher through triangle belt and pulley, the horizontal axis drive the eccentric shaft bush to rotate through gear transmission. The eccentric shaft drives the main shaft to make the movable cone plate swing at a regulated track from time to time, the materials are crushed due to constant pressed and crooked in the crushing cavity. The finished products are discharged from the discharging open.