impact crusher on tracks

1012ts tracked impact crusher - tesab engineering

It boasts a x2 deck independent pre-screen fitted as standard which results in lower cost operation as a sized product can be produced on the side belt while at the same time reducing wear. The 1012TS features a heavy duty crusher unit has a 1200mm (47) diameter rotor along with an extra crushing and shaping path.

compact crushers - the original since 1991 | rubble master

Most crushers are big and bulky machines designed for working in quarries. RUBBLE MASTER mobile impact crushers are designed in a compact way so that your on-site crushing project becomes more profitable.

Compact Crushers are track-mounted crushing machines that are easy to move because they weigh less than other mobile crushers in their class. Whether you work in urban areas or confined spaces a RM Compact Crusher can do the job.

RUBBLE MASTER Compact Crushers provides maximum performance from 90 to 385 TPH while consuming mininum space. The engine is located underneath the hopper saving weight while increasing access and safety.

used impact crusher for sale in united states. fabo equipment & more | machinio

POYLGON Tertiary Impact Crusher is ideally suited to crush medium-hard, non-abrasive materials down to a cubical, well-graded product size of 1-5 mm (60% passing) in a single pass. Due to its added control over t...

POLYGON Primary Impact Crushers are excellent solutions for crushing soft & middle hard materials with high production capacity and cubical shaped products. The high reduction ratio of our Primary Impact Crushers...

POLYGON Secondary Impact Crushers offer high capacity, cubic shape, and reduced wear costs. Besides having the greatest durability, our ease of maintenance means less total downtime. Thanks to their three-step pe...

POLYGON Vertical Shaft ImpactCrushersare known as also SAND MAKING MACHINES and used as a tertiary stage crusher to get high ratio of fine material and to give cubical shape to the products that are coming thro...

FABO MVSI Series are mobile type & closed circuit crushing and screening plant known as also SAND MAKING MACHINE that is used for high percentage of cubical shape sand production purpose by processing hard materi...

FABO MVSI Series are mobile type & closed circuit crushing and screening plant known as also SAND MAKING MACHINE that is used for high percentage of cubical shape sand production purpose by processing hard materi...

FABO MVSI Series are mobile type & closed circuit crushing and screening plant known as also SAND MAKING MACHINE that is used for high percentage of cubical shape sand production purpose by processing hard materi...

i54v3/i54rv3 impact crusher - mccloskey international

The I54v3 is built around a 1200mm (48) x 1350mm (53) four bar impactor with a 1360mm (53.5) x 950mm (37) feed opening. An independently vibrating double-deck grizzly pre-screen removes the majority of the fines in advance of the crushing chamber, increasing capacity and reducing wear.

The I54Rv3 offers a full screening and recirculating system, allowing operators to produce a high quality crushed and screened final product with one machine. The crushers offer the option to discharge to a vibratory underpan, or direct to the main conveyor.

Customers like Duivenvoorden Haulage, based in Innisfil, Ontario, understand the power and the practicality of filling quarries with McCloskey. They have a fleet of McCloskey equipment at work in three

nordtrack i908 mobile impact crusher - metso outotec

Offered with a wide variety of different impact hammers, Nordtrack I908 is ideal for many applications. The clutch-driven direct drive system provides highly efficient fuel consumption to crushing ratio and compact design saves on transportation costs.

One of the keys to maximizing throughput and reducing operating costs is to ensure that machine uptime is high. A longer part lifetime directly reduces the cost per tonne. By using the right parts, understanding how the machine works, and carrying out preventive and predictive maintenance with our help, you will get the most out of your machine.

choosing a mobile impact crusher for recycling what you need to know

RPN connected with product experts and Canadian distributors representing eight of the leading global manufacturers of mobile impact crushers to gain a little more insight into the benefits, features and evolution of this integral tool of today's C&D, concrete and asphalt recycling industries.

Mobile impact crushers, also known as the tracked impact crusher or recycling impactor, are recognizable mainly due to the fact that these crushers are mounted on a tracked undercarriage. Overall range of capacity for mobile impact crushers is roughly about 100 to 500 tons per hour.

Today's mobile impact crushers are especially ideal for smaller-scale recycling operations, for on-site recycling of demolition waste, and for tight-space urban and roadside applications. These units feature a diesel or electric drive system, are transportable by trailer, and can be simply driven off at the location of material that needs to be processed, and go to work very quickly.

With their capability to produce accurately-sized end-product with a cubical end product shape, mobile impact crushers work well as closed circuit stand-alone plants, or they can add significant productivity to any operation, working in tandem with a jaw crusher or screen plant.

Tracked impact crushing plants have evolved greatly over the last several decades, as their designs have been continuously updated and as the crushing market has changed. Major trends include the introduction of electric drive and hybrid systems as opposed to diesel-hydraulic drive systems, and decreases in size, weight, fuel consumption, cost-per-ton, and sound and dust generation.

Today's mobile impact crushers are ideal for use in a wide range of applications, including as a mobile recovered concrete crusher, or for asphalt and mixed C&D waste. They are available compliant to Tier 4 Final emissions standards, and can be equipped with or without a built-in screen, as well as many options specifically geared towards creating recycled materials. Todays mobile impact crushers are safer, more mobile, easier to maintain and operate, and are available with sophisticated machine automation and monitoring.

"The growth in recycling of concrete and asphalt recycling industries has led to higher demand for smaller, more mobile crushers," says John O'Neill, McCloskey International's VP of sales. "Over the last 10 years we have improved our control panel systems to provide operators with more knowledge and information about what is going on inside their machines at all times. The units are also easier and faster to set up."

According to Daryl Todd of B.C.-based Frontline Machinery, the Canadian dealer for Belgium-based crushing and screening plant manufacturer Keestrack, "Wesee a strong movement towards turning concrete and asphalt rubble materials into higher quality recycled materials such as construction sand, washed recycled drain rock, road mulch, RAP (reclaimed asphalt pavement) and a host of other quality products with a much higher value.

"The impact crusher's ability to handle steel-reinforced concrete, along with custom options, such as plastics and wood-waste removal systems, washing systems and more, has enabled recyclers to create much higher quality end products, and crush and process materials previously deemed only waste, or too difficult to process."

"The reason is the quality of the material and very cubical shape produced. The impact crusher is a first- and second-stage crusher in one unit, so you can crush a 600-mm product down to a final product for resale as recycling aggregate.

"Our machines are excellent in recycling asphalt, as we can slow down the rotor speed to crush the asphalt, but not the aggregate inside the asphalt, so the material can be reused in asphalt mixing plants, a huge savings on cost."

According to Norbert Dieplinger, Austria-based SBM Mineral Processing's international business development manager, "Specs are getting tighter so crushers must be much more accurate than in the past. For example, a few years back you could just crush aggregate down to 0- to 3-inch material and use it for road base. Now, engineers are allowing the use of more and more recycled asphalt into their mix, instead of all-natural aggregate and crushed concrete, and not just as road base material. With impact crushers, the shape is exactly what you need, you can get down to smaller sizes and they can process building debris with rebar."

Alexander Taubinger, Rubble Master's managing director and VP sales, says "Cost of ownership and costs per ton are key figures for our customer base." Rubble Master machines feature a diesel-electric drive that burns less fuel, and low maintenance costs are due to the company's latest design and product development.

"Back in the day, it was all about tons per hour. Machines were built overly strong and heavy with large, inefficient power solutions. This is second or third priority these days, since contractors have to meet other job requirements when it comes to most recycling applications."

He adds that with respect to end markets, Rubble Master has always been focused on the final product size and quality. "Lots of contractors still only think about reducing the size of material. It's all about reusable and resalable product size and quality these days."

The changing value of recovered metal, especially over the last decade, is a consideration for all recyclers and contractors managing recycled materials. For users of mobile impact crushers in the processing of concrete and C&D rubble, even with the fluctuating price of recovered steel seen over the last several years, efficient metal separation remains a key component.

"Unfortunately, with the way things have turned as of late, scrap iron is not worth a lot. But I can tell you that having systems in place to remove it is paramount," says Tim Harms, crushing and screening product manager, Kolberg Pioneer (a KPI-JCI & ASTEC Screens company.)

"If you have any metal contamination in your end product, you'll be in trouble trying to resell that product. So it's very important to get it removed. Ten years ago, scrap was of higher value and that was part of the equation. Now it's just the fact that you need to get it out so that you can resell the product. Impact crushers are very good at liberating scrap iron from concrete."

Stephen Whyte, product manager, mobile product development, KPI-JCI & Astec Mobile Screens, adds that the growth of the contractor/rental market has also been key in driving the growth of all tracked crushing and screening plants.

"Guys today can load a tracked impact crusher, go do a job for a week, load it off on the weekend, and they can be set, ready to go on the next site the following week," says Whyte. "It's the contractor/rental market that's really driven the mobile impact crusher market."

He adds that for impact crushing in general, mobile, tracked units are the least path of resistance to get into the business. "You've got the highest reduction ratio. You've probably got the lowest capital investment. And you can get the most bang for your buck'. Almost always you will see entry-level tracked impactors as the first choice for contractors getting into the C&D materials recycling business, no matter the brand."

The stand-out feature of the mobile crusher or tracked impactor for recycling applications, is its mobility, combined with high productivity per hour. Units are fully self-contained on their tracked undercarriage and can easily be driven off a trailer by one operator and quickly put to work, with excellent capability for moving directly to materials. Some models are even capable of tracking (moving about on their tracks) while crushing.

"The ability to move within the job site and job to job is important to the contractor, or other end user, thus driving the demand for portable crushers," says Jody Beasley, national sales director at Screen Machine. "One of the biggest expenses in material processing is physically handling the material. Every time material is moved, labour and expenses are involved. Tracked impact crushers bring the machine to the job site, right to the pile, and allow for very efficient material processing.

"It's all about tons per hour. Our machines have been designed to produce maximum tonnage and one significant way they do that more efficiently is through our patented Crusher Relief System. The Screen Machine Crusher Relief System allows the operator to raise the crusher lid up to six inches while the machine is in operation. This is a huge help in preventing jams inside the crusher and ultimately delivers thousands of additional tons of product over the life of the machine."

According to Stephen Whyte, KPI-JCI and Astec Mobile Screens, "Mobile impact crushers are higher capacity than they were when they first came on. When the first tracked machines came in, they were seen as crushers that were highly portable but would do less weight than the typical portable [trailer-mounted] machine. Whereas now, some of the tracked machines we manufacture can reach those same capacities, and compete with the portable setups.

"Another great feature with our impact crushers is that they allow operators to crush and track at the same time," he continues. "This is why you'll see a lot of these units being used along the highway. One operator can basically load the machine and operate the tracked crusher at the same time."

"This is very important," adds Kolberg-Pioneer's Tim Harms. "You can be crushing and don't have to disengage the crusher to track the machine. You can continue to crush while the machine is being moved around on its tracks, which is a big advantage with respect to time savings. Time is of a huge value. If you lose 10 percent of your time, just because you've got to wait for the crusher to stop so you can move it, those are dollars."

Traditionally, mobile impact crushers have used a diesel-hydraulic engine for the track-drive and power to the crusher. The advent of electric-drive and hybrid systems is one of the main advancements that has occurred over the last decade, and its development is seen by many as one of the most significant trends going forward, especially considering the importance of fuel efficiency, rising transport and operational costs and the global focus on reducing emissions.

"Lowest cost per ton produced is crucial in the customer's business," says Metso Minerals' product manager, Jouni Hulttinen, who adds that main focus areas in their Lokotrack line development have been ease of transport, maintenance and service, as well as safety and energy efficiency.

"Energy efficiency has been a very focused development area," says Hulttinen. "We have reduced fuel consumption up to 20 percent with our tracked impactors." He says one good example is the Lokotrack LT1213(S) (S' designates a built-in screen component) which uses a stand-by function' where the machine switches to idling mode if there is no load on the engine. "Just five minutes on stand-by, per hour, can save 10 litres of fuel per day."

According to Norbert Dieplinger, the drive systems in crushers manufactured by SBM are available as diesel-electric or can be run 100-percent electric. "Not only does electric power reduce the carbon footprint, it can save contractors up to 30 percent on fuel costs when you compare them to the diesel-hydraulic drive systems that were common in the past and are still used by lots of manufacturers," he says.

"This permits high fuel efficiency and allows optimal loading of the crusher," explains Joe Schappert, Kleemann's senior technical sales manager. "Outstanding performance is made possible in part by the extremely efficient direct drive, with which these machines are equipped. A latest-generation diesel engine transmits its power almost loss-free directly to the flywheel of the crusher, via a robust fluid coupling and V-belts. This drive concept enables enormous versatility, as the rotor speed can be adjusted in four stages to suit different processing applications."

A first question to ask when considering a purchase, according to McCloskey's John O'Neill, is: what do you want the machine to do? He says it is necessary for a solid sense of reality to be a big part of the buying decision. "Too many times the customer is upset because they expect peak performance to be the norm, when they need to be looking at all aspects of their operation and how it can support the crusher and the desired end goals or products."

"What kind of support equipment is available and can it support the tonnage capacity of the crusher?" he asks. He adds that other important questions include: Who are the customers? What is the application you intend to use it for? What spec are you working with? How large are the piles to be crushed?"

"If the impact crusher needs a part or maintenance items, can you be confident that the manufacturer will get those parts to you as quickly as possible?" asks Screen Machine's Jody Beasley. "Our machines are manufactured in Ohio, and all parts orders are fulfilled here. We pride ourselves on the fact that more than 97 percent of in-stock parts orders ship the same day."

"All impactors are not created equal, and the differences are significant," says Daryl Todd, Frontline Machinery. "We strongly suggest taking a close look when comparing various models. Start off with the technical specifications, including engine horsepower, the weight of rotor and blow bars, as well as ease of transport, machine weight and dimensions."

Todd says there are many questions to ask, including: Is the rotor direct-drive from the engine, electric drive or hydraulic drive? What is the hopper capacity and feeding height? And what are the after-screen options - single-, double- or triple-deck? Does the machine have the ability to track while in full production? What type / quality are the key components such as hydraulics and electronics? And what is the type and quality of steel used in the frame, crusher housing and rotor? He adds that any mobile impact crusher should also have a user-friendly design, with ease of changing blow bars, and ease of access for maintenance and servicing.

Keestrack's Michael Brookshaw says one of the main questions to ask when considering an impact crusher is: can you transport the unit with your own transport means? "The material that you need to crush in your area is important," he says.

"Look at the costs per ton involved on the purchasing and running of the unit. What are the amounts of material that need to be crushed? Are they large deposits of 30,000 tons or smaller deposits of 500 to 1,000 tons? You should also consider the feed size and capacity that you will need. Would electric drive provide an advantage on the environmental side of the business?"

He adds that the technical aspects of the unit are also very important. Electric drive, pre-screen before the crusher, crusher overload system, pan feeder under the crusher, weight, as well as service and operator friendliness of the unit are all areas that need to be considered. Joe Schappert from Kleemann says that buyers considering a purchase should make sure they choose the correct size for the application and consider how product will flow through the crusher.

"The Kleemann Continuous Feed System (CFS) manages a more equal loading of the crushing area, in which the conveying frequencies of the feeder trough and the pre-screen are adapted independently of each other to the level of the crusher, thus significantly boosting performance.

"Our new impact crushers are differentiated by their size and productivity," continues Schappert. "Our model MR 110 Zsi EVO 2 has a crusher inlet opening of 43.3 inches (1,100 mm), and the MR 130 Zi EVO 2 has a crusher inlet opening of 51 inches (1,300 mm). These provide feed capacities of up to 350 or 450 tph, respectively.

"Consider diesel-electric drives," he adds. "Our latest EVO 2 Mobirex mobile impact crushers utilize direct-drive crushers and electric drives for the vibrating conveyors, belts and the pre-screen. This permits high fuel efficiency and allows optimal loading of the crusher."

Looking ahead, Daryl Todd of Frontline Machinery says there will be more hybrid technology, electric/diesel hybrids, meaning reduced fuel consumption, as well as improved noise reduction. He says that we'll also see advances in contaminant removal systems and washing systems integrated into closed-circuit impact crushers.

GPS systems are another area where Todd expects advances to continue. "GPS systems provide remote monitoring and control, tying in with onboard belt scales," he says. "This allows managers to have total insight into remote operations."

Michael Brookshaw of Keestrack says their telematic system allows customers, distributors and the manufacturer to monitor their machines, inform from distance and advise on capacity, running of the unit and fault finding.

"There has also been much development in the area of wear parts, which are more durable than ever," says Brookshaw. "Our electric-hybrid and full-hybrid system, which we call Keebrid, are excellent in the areas of durability, lower emissions, running costs and all environmental issues."

For McCloskey's John O'Neill, the trend of using one machine to do multiple parts of an operation will continue to decline. "The crusher should crush and the screeners should screen," he says. "Trying to squeeze it all onto one platform is hard and often results in compromises, which if not acceptable to the customer, can be disastrous on the job site."

Rubble Master's Taubinger expects to see improvements in efficiency in all regards. "We expect a very heavy focus on emissions such as dust and noise, as well as more fuel efficiency, safety and ease of operation."

"Advanced diagnostic tools can enable the operator to monitor processes in real time with the ability to adjust settings on a touch screen on the crusher, or even from inside an excavator cab. This leads to further increases in safety and efficiency with a reduction in maintenance, operating costs and downtime.

"Diesel-electric power is the future because of all the advantages it provides with respect to decreased fuel costs and decreased carbon footprint," adds Dieplinger, who also points out that this will make a big difference in years to come, especially considering new carbon taxes being implemented globally.

According to Metso's Jouni Hulttinen, base construction for bikeways, road base and industrial areas are growing end markets for material made from recycled C&D, concrete and asphalt. He says mobile impact crushers, and all types of crushers for recyclable materials, will increasingly move more towards application in the production of high-quality end products.

"Use of the end material has gone from the most basic application to higher-spec building materials," says Hulttinen. "The future trend will go more towards substituting aggregates, new concrete made from recycled concrete, and recycled asphalt added to make new asphalt." RPN

impact crusher working principle

Starting from the base working principle that compression is the forcing of two surfaces towards one another to crush the material caught between them. Impact crushing can be of two variations: gravity and dynamic. An example of gravity impact would be dropping a rock onto a steel plate (similar to what goes on into an Autogenous Mill). Dynamic impact could be described as material dropping into a rapidly turning rotor where it receives a smashing blow from a hammer or impeller. Attrition crushing is the reduction of materials by rubbing; primarily a grinding method. Shear crushing is accomplished by breaking along or across lines of cleavage. It is possible, when required, for a crusherto use a combination of two or three of these principles.

Rapidly increasing operating costs for minerals beneficiating plants continue to be the biggest single problem in maximizing profitability from these operations. The average world inflation rate has been increasing over the last decade and shows little sign of easing. The threat of continued increases in the price of fuel oil will eventually increase the cost of electrical power, in direct proportion for most users. This will undoubtedly cause closure of some lower grade ore bodies unless energy utilization efficiencies, particularly in comminution, can be improved.

Most of the recent literature concerning comminution performance improvement has been directed at grinding mill performance. It can be expected that more refined control systems will improve the overall milling energy efficiency, which is normally the largest single cost component of production. However, published gains by such methods to date appear to be limited to something less than 10%.

The second largest cost for comminution processes is normally that for wear metal consumed in grinding operations. Allis-Chalmers has continuing -research programs into all forms of comminution processes involving crushing and grinding. Improved crushing technology shows the way to reducing both energy and wear metal consumption mainly by producing finer feed which will improve downstream grinding mill performance.

A new testing procedure for studying crushing phenomena, presently being perfected by Allis-Chalmers, is described for the first time. These bench scale laboratory tests will give more accurate prediction of both energy requirements and size distribution produced in commercial crushing processes. As a direct result, this machine will allow more accurate comparisons to be made in capital and operating cost expenditures for various combinations of crushing and milling processes.

These new testing procedures can be run on small samples including pieces of drill core material. They could be part of testing and feasibility studies for most new concentrators. The same methods can be used to determine likely yield of various sized crushed products and, therefore, benefit crushed stone producers.

The theoretical and practical phenomena concerning comminution processes have received considerable attention in the literature and are not discussed here in any detail. Instead, the breakage studies in this paper are based on an empirical treatment of the fundamental relationships between energy and the size distributions of processed particles that have been observed both in the laboratory and in large-scale, commercial cone-crushing operations.

Because of the bewildering number of variables encountered when studying comminution processes, most investigators have preferred to assume that the size distribution generated in milling and crushing processes bears some relatively fixed relationship such as those described by Gates-Gaudin-Schuhmann1 or Rosin-Rammler.

Fred Bond, in his Third Theory of Comminution, used the former, essentially assuming that size versus cumulative percent passing that size was represented by a straight line of assumed slope 0.5 below the 80% passing size. Based on this assumption, Bond derived his well-known relationship:

The Work Index for rod and ball mills can be determined from laboratory tests and, as demonstrated by Rowland, the relationship gives us a reasonably accurate tool for the design of rotary grinding mill circuits.

Bonds methods have been less successful in predicting fine crushing performance, however, primarily because the typical crusher feed and product distributions do not meet the assumed conditions necessary for the satisfactory application of his equation (see Fig. (1)).

It is most evident that the curved lines appearing on Fig. (1) do not represent a Gates-Gaudin-Schuhmann size distribution. It is therefore not surprising that Bonds procedures do not work well in this situation. The Rosin- Rammler distribution has also been found inadequate to generally describe crusher products.

Work during the early 60s led to the concept of comminution as a repetitive process, with each step consisting of two basic operations the selection of a particle for breakage and the subsequent breakage of this particle by the machine. In this approach, the process under investigation is modelled by combining the particle selection/breakage event with information on material flow in and out of the comminution device.

Most workers who have used this approach have considered size reduction to be the result of the mechanical operation of the comminution device. This mechanical operation consumes the energy, and size reduction is merely a result of this energy consumption. This viewpoint is reasonably valid for tumbling mills where energy input tends to be constant and the proportion of the energy that is usefully consumed in particle breakage is low (<10%). It does not appear to be valid in compression crushers, however, since breakage energy is a significant proportion (>50%) of the total energy input to the crusher and markedly different power rates (energy input per unit of crusher feed) can be obtained by varying ore feedrates and/or crusher parameters such as closed side setting. It will therefore be necessary to include energy information in any model of the crushing process before it will be possible to accurately predict crusher performance. The inclusion of this energy-size information will significantly increase the complexity of these models.

The single-particle breakage event has been the subject of several studies. Most of these have utilized only sufficient energy to break the particle and do not simulate commercial crushing operations where energy levels are such that catastrophic repetitive breakage usually takes place. This approach to the study of comminution processes does yield valuable information, however, and it is unfortunate that it has not received greater attention.

The Bond Impact Work Index method has been an industry standard for the determination of crusher power requirements but was originally developed to ensure, that sufficient power was connected to primary gyratory crushers. In this method, pieces of rock are fractured by trial and error in the test device shown in Fig. (2), until sufficient impact energy has been applied to break the rock.

Normally, the rock breaks in halves, and in most tests only two and seldom more than three large pieces are observed after fracture. No size distribution information is used in calculating the Bond Impact Work Index from the formula:

KWH/tonne). The procedure works quite well for this type of crusher but tends to understate power requirements in fine crushers where power rates are typically much higher (upwards from 0.25 KWH/tonne).

Because of this, a research program was instituted by Allis-Chalmers Comminution Task Force Committee to break rock in a manner more analogous to that observed within commercial fine crushers. A pendulum type test device similar in most respects to that developed by the United States Bureau of Mines and shown diagrammatically in Fig. (3), was built and has been used in an extensive test program to determine whether it would be possible to predict cone crusher performance.

The rock samples selected for crushing in this device are usually minus 38mm (1-), plus 19mm () in size. The sample rock is weighed and then placed between the platens. The end of the rebound platen is placed in contact with the rebound pendulum and the crushing pendulum is raised to a predetermined vertical height which depends on the size of the sample. The crushing pendulum is then released after striking the crushing platen and breaking the rock, the remaining energy is transferred via the rebound platen to the rebound pendulum. The horizontal distance that the rebound pendulum travels is recorded by displacement of a marker and is subsequently converted to a vertical height.

where Ec = crushing energy E1 = crushing pendulum potential energy (before release) KE = kinetic energy of the two platens E2 = rebound pendulum maximum potential energy (after crushing) EL = system energy loss (sound, heat, vibration)

The system energy loss, EL, is determined by plotting EL as a function of the initial height of the crushing pendulum with no rock present. The major portion of this loss is by vibration. It is felt that the difference between system energy losses with and without rock present in the system is minimal as long as enough initial energy is supplied to result in a small elevation of the rebound pendulum.

The fragments from several rock samples broken under identical conditions were combined for each of the size analyses reported in this paper. Bond Work Indices were also backcalculated from the data using the standard formula, i.e.

Confirmation of the ability of the procedure to provide information suitable for the prediction of crusher performance was obtained by taking feed samples from 31 commercial operations treating a wide range of rocks and ores. At the time of taking a feed sample for laboratory testing in the pendulum device, relevant performance data such as power, feed rate and size distributions for feed and product were taken on the operating crusher. Several thousand rocks have been broken during tests with the device over the past 3 years.

The first thing to notice from these graphs is that there is an extremely good family relationship within each set of size distribution curves. This is somewhat coincidental, since the pendulum curve is the product of a single particle-single impact breakage event and the typical crusher product curve results from multiple particle-multiple impact breakage, but is probably due to two facts:

In order to show that the pendulum product size distribution is sensitive to power rate, several tests have been run on the same feed material at different levels of pendulum input energy. Typical results are shown in Fig. (7) as Schuhmann size distribution (log-log) plots. It can be seen that increasing amounts of fine material are produced with increasing energy input. The same effect was previously demonstrated for an operating crusher in Fig. (1). We can, therefore, conclude from this

that net power rates will be the same in the pendulum and the crusher when the two distributions coincide (as they do in Figs. (4) thru (6). This permits us to determine the efficiency of power utilization in crushers and to predict the product size distribution which will arise from operating crushers at different power rates.

The Bond Work Index figures obtained by backcalculation from the pendulum data are compared with the Net Work Index values obtained from the plants in Fig. (8). The agreement is surprisingly good especially in view of the fact that the 80% passing values do not completely describe the total feed arid product size distributions. This agreement is probably due to the fact that the use of comparable energy levels in both machines gives rise to similar reduction ratios and product size distributions. Because of this, the pendulum test provides a good estimate of the Net Work Index when this is required for current design procedures.

The pendulum product distribution is a breakage function and can be used in models of the process to predict crusher product distributions for different operating conditions. As an example of this approach, Whitens model of the cone crusher, Fig. (9), has been used to simulate the situation given in Fig. (4). The result of this simulation is given in Fig. (10) where it can be seen that very good approximations of crusher performance can be obtained.

The writers are firmly of the opinion that results to date prove that the use of this pendulum device can give more energy-size reduction information in a form readily useable for crusher application. The data can be generated in less time and from a much smaller sample than is required for pilot plant testing. Our present pendulum tester is a research tool and is currently being modified for use in commercial testing of minerals and rocks. More details of this device will be given at a later date.

keestrack r6 mobile tracked impact crusher

proven heavy duty impactor, with after screen transportable in one piece, easy to set-up without any support legs and highly productive in recycling , aggregates production, quarrying and mining. The full electric plug-in version can produce at zero carbon footprint.

mobile impact crushers - striker. built to last

Striker mobile horizontal impact crushers are designed for primary, secondary or tertiary crushing of construction materials in the demolition, recycling, quarrying and mining industries and feature extra thick heavy duty blow bars for longer life.

Striker electric mobile crushing and screening equipment, known as ETRAC is available in three configurations to meet the requirements of clients who share the same pressures to reduce running costs and carbon emissions. Combinations available are;

The design concept of the new Etrac range emulates the pedigree of Strikers track and portable plant established over the last 20 years. One of the pre-requisites from all our customers was that they wanted the plant to be able to integrate with existing plant on site if required, as well rationalise common parts across all the Striker range of equipment.

Strikers Etrac range are suited to all forms of mineral and extractive industry applications and range from 100tph to 450tph aggregate plants through to 1500tph mining plants. Integration and control of equipment is central to throughput optimisation. A key feature of the Striker Etrac range and in fact all Striker plant is the ability to plug and play.

This means several crushing and screening units can join together and they will all communicate with each other to maximise the plant performance. A great feature in improving clients production and profits.

After a long and comprehensive research and development phase, the first ETrac plant was manufactured and installed at a hard rock quarry in China in 2010 and was closely followed by installations in Malaysia and Australia then, more recently, a 350 tph aggregate and road base plant closer to our home in Western Australia.

Striker is a privately owned Australian company designing, manufacturing and supplying mobile crushing, screening and conveying solutions globally to the construction, mining, quarrying and recycling industries.

5256t horizontal impact crusher - portable concrete & rock crushing by screen machine industries

The 5256T Impact Crusher is a track-mounted crusher designed to crush quarry rock or recyclable materials such as concrete and asphalt. Features include standard heavy-duty tracks, a CAT ACERT C13 475 HP (354kw) diesel engine Tier IV Final. This mobile impact crusher is equipped with a 52 x 56 (1.3m x 1.4m) horizontal shaft impactor with a 56 x 38 (1.4m x .9m) feed inlet opening and fully remote controlled operation.

Our patented Remote Crusher Relief System is a key feature that allows for blockage clearance during operation. The wireless remote control triggers the lifting lid allowing over sized material to pass through the crusher without stoppage. This feature alone can save countless of hours of rock crushing during operation.

trackpactor 320/sr tracked impact crusher | powerscreen of california & hawaii

The Powerscreen Trakpactor 320 tracked impact crusher is a mid-sized horizontal impact crusher designed to offer operators and contractors both excellent reduction and high consistency of product shape for performance in quarry and recycling applications. With track mobility the plant is capable of working in the most demanding environments and features a rapid set-up time, fuel efficient direct drive system and excellent throughput capacity.