industrial ball mill

small ball mills for sale

Our small-scale miners Ball Mills use horizontal rotating cylinders that contain the grinding media and the particles to be broken. The mass moves up the wall of the cylinder as it rotates and falls back into the toe of the mill when the force of gravity exceeds friction and centrifugal forces. Particles are broken in the toe of the mill when caught in the collisions between the grinding media themselves and the grinding media and the mill wall. In ball mills, the grinding media and particles acquire potential energy that becomes kinetic energy as the mass falls from the rotating shell. Ball mills are customarily divided into categories that are mainly defined by the size of the feed particles and the type of grinding media.

Intermediate and fine size reduction by grinding is frequently achieved in a ball mill in which the length of the cylindrical shell is usually 1 to 1.5 times the shell diameter. Ball mills of greater length are termed tube mills, and when hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. In general, ball mills can be operated either wet or dry and are capable of producing products on the order of 100 um. This duty represents reduction ratios as great as 100.

The ball mill, an intermediate and fine-grinding device, is a tumbling drum with a 40% to 50% filling of balls. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture. Very large tonnages can be ground with these devices because they are very effective material handling devices. The feed can be dry, with less than 3% moisture to minimize ball coating, or a slurry can be used containing 20% to 40% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, autogenous mills, or semi-autogenous mills. Regrind mills in mineral processing operations are usually ball mills, because the feed for these applications is typically quite fine. Ball mills are sometimes used in single-stage grinding, receiving crusher product. The circuits of these mills are often closed with classifiers at high-circulating loads.

All ball mills operate on the same principles. One of these principles is that the total weight of the charge in the mill-the sum of the weight of the grinding media, the weight of the material to be ground, and any water in the millis a function of the percentage of the volume of the mill it occupies.

The power the mill draws is a function of the weight of the charge in the mill, the %of volumetric loading of the mill, the %of critical speed, which is the speed in RPM at which the outer layer of the charge in the mill will centrifuge.

For closed grinding circuits producing typical ball mill products, indirect and direct on-line measurements of the product size are available. The indirect means are those which assume that the product size is relatively constant when the feed condition to the classifying unit and the operating conditions in the classifying unit are constant. One example is maintaining a constant mass flow, pulp density and pressure in the feed to the cyclone classifier.

By using math modeling, it is possible to calculate the product size from measured cyclone classifier feed conditions and circuit operating data, thus establishing the effect on the particle size distribution in the product for changes in the variables.

Direct on-line means to measure either particle size or surface area are available for typical ball mill circuit products. These require the means to obtain representative or at least consistent samples from the grinding circuit product stream. These direct means and the calculated product particle size distributions can be used to:

Small variations in the feed size to ball mill circuits generally is not critical to the calculation of operating work index because they make a very small change in the 10F factor. Thus, a computer program can be developed to calculate operating work indices from on-line data with the feed size a constant and with the program designed to permit manually changing this value, as required to take into account changes in feed size resulting from such things as drawing down feed bins, crusher maintenance, work screen surfaces in the crushing plant, etc. which are generally known in advance, or can be established quickly. Developments underway for on-line measurement of particle size in coarser material which when completed will permit measuring the feed size used to calculate operating work indices.

recorded by a data logger, gives continuous means to report comminution circuit performance and evaluate in-plant testing. Changes in Wio indicated on data loggers alert operating and supervisory personnel that a change has occurred in either the ore or in circuit performance. If sufficient instrumentation is available, the cause for a problem can often be located from other recorded or logged data covering circuit and equipment operation, however, generally the problem calls for operator attention to be corrected.

Wio can be used to determine the efficiency of power utilization for the entire comminution section of a mill, and for the individual circuits making up the comminution section. The efficiency of a comminution circuit is determined by the following equation.

Wi is obtained by running the appropriate laboratory tests on a composite sample of circuit feed. Wio is calculated from plant operating data covering the period when the feed sample was taken. Since Wi from laboratory tests refers to specific conditions for accurate efficiency determinations, it is necessary to apply correction factors as discussed in The Tools of Power Power to Wio to put the laboratory and operating data on the same basis.

To-date, there is no known way to obtain standard work index data from on-line tests. Continuous measurement of comminution circuit efficiency is not possible and thus efficiency is not available for circuit control. Using laboratory data and operating data, efficiency can be determined for overall section and individual circuit for evaluation and reporting. Just monitoring Wio and correcting operating problems as they occur will improve the utilization of the power delivered to the comminution circuits.

Samples taken from the chips around blast hole drillings and from broken ore in the pit or mine for laboratory work index and other ore characteristic determinations before the ore is delivered to the mill, can be used to predict in advance comminution circuit performance. Test results can also be used for ore blending to obtain a more uniform feed, particularly to primary autogenous and semi-autogenous circuits.

We sell Small Ball Mills from 2 to 6 (600 mm X 1800 mm) in diameter and as long as 10 (3000 mm) in length. The mills are manufactured using a flanged mild steel shell, cast heads, overflow discharge, removable man door, spur type ring gear, pinion gear assembly with spherical roller bearings, replaceable roller bronze trunnion bearings, oil lubrication, replaceable trunnion liners with internal spirals, rubber liners and lifters, feed spout with wash port, discharge trommel with internal spiral, motor and gear reducer drive, direct coupled to pinion gear, gear guard and modular steel support frame. All ball mills always come withOSHA-type gear guard.

A PULP level sufficiently high to interpose a bed of pulp, partly to cushion the impact of the balls, permits a maximum crushing effect with a minimum wear of steel. The pulp level of theseSmall Ball Millscan be varied from discharging at the periphery to discharging at a point about halfway between the trunnion and the periphery.The mill shell is of welded plate steel with integral end flanges turned for perfect alignment, and the heads are semi-steel, with hand holes in the discharge end through which the diaphragm regulation is arranged with plugs.The trunnion bearings are babbitted, spherical, cast iron, and of ample size to insure low bearing pressure; while the shell and saddle are machined to gauge so that the shells are interchangeable.

Data based on:Wet grinding, single stage, closed circuit operation: feed:( one way dimension); Class III ore. All mills:free discharge, grated type, rapid pulp flow. N. B.for overflow type mills: capacity 80%power 83%. Dimensions :diameters inside shell without linerslengths working length shell between end liners.

The CIW is a Small Ball Mill thats belt driven, rigid bearing, wet grinding, trunnion or grate discharge type mill with friction clutch pulley and welded steel shell. The 7 and 8 foot diameter mills are of flange ring construction with cut gears while all other sizes have cast tooth gears. All these mills are standard with white iron bar wave type shell liners except the 8 foot diameter mill which is equipped with manganese steel liners. The horsepowers shown in the table are under running conditions so that high torque or wound rotor (slip ring) motors must be used. Manganese or alloy steel shell or head liners and grates can be supplied with all sizes of mills if required. Alloy steel shell liners are recommended where 4 or larger balls are used and particularly for the larger sized mills.

Small (Muleback Type) Ball Mill is built for muleback transportation in 30 and 3 diameters (inside liners). A 4 (Muleback Type) Ball Mill is of special design and will be carefully considered upon request. Mankinds search for valuable minerals often leads him far away from modern transportation facilities. The potential sources of gold, silver and strategic minerals are often found by the prospector, not close by our modern highways, but far back in the mountains and deserts all over the world. The Equipment Company has realized this fact, and therefore has designed a Ball Mill that can be transported to these faraway and relatively inaccessible properties, either by the age old muleback transportation system, or by the modern airplane. As a result these properties may now obtain a well-designed ball mill with the heaviest individual piece weighing only 350 pounds.

The prime factor considered in this design was to furnish equipment having a maximum strength with a minimum weight. For this reason, these mills are made of steel, giving a high tensile strength and light weight to the mills. The muleback design consists of the sturdy cast iron head construction on the 30 size and cast steel head construction on the larger sizes. The flanges on the heads are arranged to bolt to the rolled steel shell provided with flanged rings. When required, the total length of the shell may consist of several shell lengths flanged together to provide the desired mill length. Liners, bearings, gears and drives are similar to those standard on all Ball Mills.

This (Convertible) and Small Ball Mill is unique in design and is particularly adapted to small milling plants. The shell is cast in one piece with a flange for bolting to the head. In converting the mill from a 30x 18 to a 30x 36 unit with double the capacity, it is only necessary to secure a second cast shell (a duplicate of the first) and bolt it to the original section.

30 Convertible Ball Mills are furnished with scoop feeders with replaceable lips. Standard mills are furnished with liners to avoid replacement of the shell; however, themill can be obtained less liners. This ball mill is oftendriven by belts placed around the center, although gear drive units with cast gears can be furnished. A Spiral Screen can be attached to the discharge.

This mill may be used for batch or intermittent grinding, or mixing of dry or wet materials in the ore dressing industry, metallurgical, chemical, ceramic, or paint industries. The material is ground and mixed in one operation by rotating it together with balls, or pebbles in a hermetically sealed cylinder.

The cast iron shell which is bolted to the heads is made with an extra thick wall to give long wearing life. Two grate cleanout doors are provided on opposite sides of the shell by means of which the mill can be either gradually discharged and washed, while running, or easily and rapidly emptied and flushedout while shut down. Wash-water is introduced into the interior of the mill through a tapped opening in the trunnion. The mill may be lined with rubber, silex (buhrstone) or wood if desired.

The Hardinge Conical Ball Mill has been widely used with outstanding success in grinding many materials in a wide variety of fields. The conical mill operates on the principle of an ordinary ball mill with a certain amount of classification within the mill itself, due to its shape.

Sizes of conical mills are given in diameter of the cylindrical section in feet and the length of the cylindrical section in inches. Liners can be had of hard iron, manganese steel or Belgian Silex. Forged steel balls or Danish Flint Pebbles are used for the grinding media, depending upon the material being milled.

The Steel Head Ball-Rod Mill gives the ore dressing engineer a wide choice in grinding design so that he can easily secure a Ball-Rod Mill suited to his particular problem. The successful operation of any grinding unit is largely dependent on the method of removing the ground pulp. The Ball-Rod Mill is available with five types of discharge trunnions, each type obtainable in small, medium or large diameters. The types of discharge trunnions are:

The superiority of the Steel Head Ball-Rod Mill is due to the all steel construction. The trunnions are an integral part of the cast steel heads and are machined with the axis of the mill. The mill heads are assured against breakage due to the high tensile strength of cast steel as compared to that of the cast iron head found on the ordinary ball mill. Trunnion Bearings are made of high- grade nickel babbitt.

Steel Head Ball-Rod Mills can be converted intolarger capacity mills by bolting an additional shell lengthonto the flange of the original shell. This is possible because all Steel Head Ball or Rod Mills have bearings suitable for mills with length twice the diameter.

Head and shell liners for Steel Head Ball-Rod Mills are available in Decolloy (a chrome-nickel alloy), hard iron, electric steel, molychrome steel, and manganese steel. Drive gears are furnished either in cast tooth spur gear and pinion or cut tooth spur gear and pinion. The gears are furnished as standard on the discharge end of the mill, out of the way of the classifier return feed, but can be furnished at the mill feed end by request. Drives may be obtained according to the customers specifications.

Thats one characteristic of Traylor Ball Millsliked by ownersthey are built not only to do a first class job at low cost but to keep on doing it, year after year. Of course, that means we do not build as many mills as if they wore out quicklyor would we? but much as welike order, we value more the fine reputationTraylor Ball Mills have had for nearly threedecades.

Thats one characteristic of Traylor Ball Mills We dont aim to write specifications into thisliked by ownersthey are built not only to do advertisementlet it suffice to say that theresa first class job at low cost but to keep on do- a Traylor Ball Mills that will exactly fit anyanything it, year after year. Of course, that means requirement that anyone may have.

If this is true, there is significance in the factthat international Nicked and Climax Molybdenum, theworlds largest producers of two important steel alloys, areboth users of MARCY Mills exclusively. With international interest centered on increasingproduction of gold, it is even more significant that MARCYMills are the predominant choice of operators in everyimportants gold mining camp in the world.

Ball Mill. Intermediate and fine size reduction by grinding is frequently achieved in a ball mill in which the length of the cylindrical shell is usually 1 to 1.5 times the shell diameter. Ball mills of greater length are termed tube mills, and when hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. In general, ball mills can be operated either wet or dry and are capable of producing products on the order of 100 pm. This duty represents reduction ratios as great as 100.

The ball mill, an intermediate and fine-grinding device, is a tumbling drum with a 40% to 50% filling of balls (usually steel or steel alloys). The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture. Very large tonnages can be ground with these devices because they are very effective material handling devices. The feed can be dry, with less than 3% moisture to minimize ball coating, or a slurry can be used containing 20% to 40% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, autogenous mills, or semiautogenous mills. Regrind mills in mineral processing operations are usually ball mills, because the feed for these applications is typically quite fine. Ball mills are sometimes used in single-stage grinding, receiving crusher product. The circuits of these mills are often closed with classifiers at high-circulating loads.

These loads maximize throughput at a desired product size. The characteristics of ball mills are summarized in the Table, which lists typical feed and product sizes. The size of the mill required to achieve a given task-that is, the diameter (D) inside the liners-can be calculated from the design relationships given. The design parameters must be specified.

The liner- and ball-wear equations are typically written in terms of an abrasion index (Bond 1963). The calculated liner and ball wear is expressed in kilograms per kilowatt-hour (kg/kWh), and when multiplied by the specific power (kWh/t), the wear rates are given in kilograms per ton of feed. The wear in dry ball mills is approximately one-tenth of that in wet ball mills because of the inhibition of corrosion. The efficiency of ball mills as measured relative to single-particle slow-compression loading is about 5%. Abrasion indices for five materials are also listed in the Table.

The L/D ratios of ball mills range from slightly less than 1:1 to something greater than 2:1. The tube and compartment ball mills commonly used in the cement industry have L/D ratios 2.75:1 or more. The fraction of critical speed that the mill turns depends on the application, and most mills operate at around 75% of critical speed. Increased speed generally means increased power, but as the simulations presented in Figure 3.26 show, it can also produce more wasted ball impacts on the liners above the toe. causing more wear and less breakage.

There are three principal forms of discharge mechanism. In the overflow ball mill, the ground product overflows through the discharge end trunnion. A diaphragm ball mill has a grate at thedischarge end. The product flows through the slots in the grate. Pulp lifters may be used to discharge the product through the trunnion, or peripheral ports may be used to discharge the product.

The majority of grinding balls are forged carbon or alloy steels. Generally, they are spherical, but other shapes have been used. The choice of the top (or recharge) ball size can be made using empirical equations developed by Bond or Azzaroni or by using special batch-grinding tests interpreted in the content of population balance models. The effect of changes in ball size on specific selection functions has been found to be different for different materials. A ball size-correction method can be used along with the specific selection function scale-up method to determine the best ball size. To do this, a set of ball size tests are performed in a batch mill from which the specific selection function dependence on ball size can be determined. Then, the mill capacities used to produce desired product size can be predicted by simulation using the kinetic parameter corresponding to the different ball sizes.

The mill liners used are constructed from cast alloy steels, wear-resistant cast irons, or polymer (rubber) and polymer metal combinations. The mill liner shapes often recommended in new mills are double-wave liners when balls less than 2.5 in. are used and single-wave liners when larger balls are used. Replaceable metal lifter bars are sometimes used. End liners are usually ribbed or employ replaceable lifters.

The typical mill-motor coupling is a pinion and gear. On larger mills two motors may be used, and in that arrangement two pinions drive one gear on the mill. Synchronous motors are well suited to the ball mill, because the power draw is almost constant. Induction, squirrel cage, and slip ring motors are also used. A high-speed motor running 600 to 1,000 rpm requires a speed reducer between the motor and pinion shaft. The gearless drive has been installed at a number of locations around the world.

ball mills - an overview | sciencedirect topics

A ball mill is a type of grinder used to grind and blend bulk material into QDs/nanosize using different sized balls. The working principle is simple; impact and attrition size reduction take place as the ball drops from near the top of a rotating hollow cylindrical shell. The nanostructure size can be varied by varying the number and size of balls, the material used for the balls, the material used for the surface of the cylinder, the rotation speed, and the choice of material to be milled. Ball mills are commonly used for crushing and grinding the materials into an extremely fine form. The ball mill contains a hollow cylindrical shell that rotates about its axis. This cylinder is filled with balls that are made of stainless steel or rubber to the material contained in it. Ball mills are classified as attritor, horizontal, planetary, high energy, or shaker.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles, as well as collision energy. These forces are derived from the rotational motion of the balls and movement of particles within the mill and contact zones of colliding balls.

By rotation of the mill body, due to friction between mill wall and balls, the latter rise in the direction of rotation till a helix angle does not exceed the angle of repose, whereupon, the balls roll down. Increasing of rotation rate leads to growth of the centrifugal force and the helix angle increases, correspondingly, till the component of weight strength of balls become larger than the centrifugal force. From this moment the balls are beginning to fall down, describing during falling certain parabolic curves (Figure 2.7). With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls are attached to the wall due to centrifugation:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 6580% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

The degree of filling the mill with balls also influences productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 3035% of its volume.

The mill productivity also depends on many other factors: physical-chemical properties of feed material, filling of the mill by balls and their sizes, armor surface shape, speed of rotation, milling fineness and timely moving off of ground product.

where b.ap is the apparent density of the balls; l is the degree of filling of the mill by balls; n is revolutions per minute; 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption; a mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, i.e. during grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction, and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles as well as collision energy. These forces are derived from the rotational motion of the balls and the movement of particles within the mill and contact zones of colliding balls.

By the rotation of the mill body, due to friction between the mill wall and balls, the latter rise in the direction of rotation until a helix angle does not exceed the angle of repose, whereupon the balls roll down. Increasing the rotation rate leads to the growth of the centrifugal force and the helix angle increases, correspondingly, until the component of the weight strength of balls becomes larger than the centrifugal force. From this moment, the balls are beginning to fall down, describing certain parabolic curves during the fall (Fig. 2.10).

With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls remain attached to the wall with the aid of centrifugal force is:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 65%80% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

where db.max is the maximum size of the feed (mm), is the compression strength (MPa), E is the modulus of elasticity (MPa), b is the density of material of balls (kg/m3), and D is the inner diameter of the mill body (m).

The degree of filling the mill with balls also influences the productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 30%35% of its volume.

The productivity of ball mills depends on the drum diameter and the relation of drum diameter and length. The optimum ratio between length L and diameter D, L:D, is usually accepted in the range 1.561.64. The mill productivity also depends on many other factors, including the physical-chemical properties of the feed material, the filling of the mill by balls and their sizes, the armor surface shape, the speed of rotation, the milling fineness, and the timely moving off of the ground product.

where D is the drum diameter, L is the drum length, b.ap is the apparent density of the balls, is the degree of filling of the mill by balls, n is the revolutions per minute, and 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption. A mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, that is, during the grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

Milling time in tumbler mills is longer to accomplish the same level of blending achieved in the attrition or vibratory mill, but the overall productivity is substantially greater. Tumbler mills usually are used to pulverize or flake metals, using a grinding aid or lubricant to prevent cold welding agglomeration and to minimize oxidation [23].

Cylindrical Ball Mills differ usually in steel drum design (Fig. 2.11), which is lined inside by armor slabs that have dissimilar sizes and form a rough inside surface. Due to such juts, the impact force of falling balls is strengthened. The initial material is fed into the mill by a screw feeder located in a hollow trunnion; the ground product is discharged through the opposite hollow trunnion.

Cylindrical screen ball mills have a drum with spiral curved plates with longitudinal slits between them. The ground product passes into these slits and then through a cylindrical sieve and is discharged via the unloading funnel of the mill body.

Conical Ball Mills differ in mill body construction, which is composed of two cones and a short cylindrical part located between them (Fig. 2.12). Such a ball mill body is expedient because efficiency is appreciably increased. Peripheral velocity along the conical drum scales down in the direction from the cylindrical part to the discharge outlet; the helix angle of balls is decreased and, consequently, so is their kinetic energy. The size of the disintegrated particles also decreases as the discharge outlet is approached and the energy used decreases. In a conical mill, most big balls take up a position in the deeper, cylindrical part of the body; thus, the size of the balls scales down in the direction of the discharge outlet.

For emptying, the conical mill is installed with a slope from bearing to one. In wet grinding, emptying is realized by the decantation principle, that is, by means of unloading through one of two trunnions.

With dry grinding, these mills often work in a closed cycle. A scheme of the conical ball mill supplied with an air separator is shown in Fig. 2.13. Air is fed to the mill by means of a fan. Carried off by air currents, the product arrives at the air separator, from which the coarse particles are returned by gravity via a tube into the mill. The finished product is trapped in a cyclone while the air is returned in the fan.

The ball mill is a tumbling mill that uses steel balls as the grinding media. The length of the cylindrical shell is usually 11.5 times the shell diameter (Figure 8.11). The feed can be dry, with less than 3% moisture to minimize ball coating, or slurry containing 2040% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, AG mills, or SAG mills.

Ball mills are filled up to 40% with steel balls (with 3080mm diameter), which effectively grind the ore. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture.

When hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. As mentioned earlier, pebble mills are widely used in the North American taconite iron ore operations. Since the weight of pebbles per unit volume is 3555% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus, in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly a higher capital cost. However, the increase in capital cost is justified economically by a reduction in operating cost attributed to the elimination of steel grinding media.

In general, ball mills can be operated either wet or dry and are capable of producing products in the order of 100m. This represents reduction ratios of as great as 100. Very large tonnages can be ground with these ball mills because they are very effective material handling devices. Ball mills are rated by power rather than capacity. Today, the largest ball mill in operation is 8.53m diameter and 13.41m long with a corresponding motor power of 22MW (Toromocho, private communications).

Modern ball mills consist of two chambers separated by a diaphragm. In the first chamber the steel-alloy balls (also described as charge balls or media) are about 90mm diameter. The mill liners are designed to lift the media as the mill rotates, so the comminution process in the first chamber is dominated by crushing. In the second chamber the ball diameters are of smaller diameter, between 60 and 15mm. In this chamber the lining is typically a classifying lining which sorts the media so that ball size reduces towards the discharge end of the mill. Here, comminution takes place in the rolling point-contact zone between each charge ball. An example of a two chamber ball mill is illustrated in Fig. 2.22.15

Much of the energy consumed by a ball mill generates heat. Water is injected into the second chamber of the mill to provide evaporative cooling. Air flow through the mill is one medium for cement transport but also removes water vapour and makes some contribution to cooling.

Grinding is an energy intensive process and grinding more finely than necessary wastes energy. Cement consists of clinker, gypsum and other components mostly more easily ground than clinker. To minimise over-grinding modern ball mills are fitted with dynamic separators (otherwise described as classifiers or more simply as separators). The working principle is that cement is removed from the mill before over-grinding has taken place. The cement is then separated into a fine fraction, which meets finished product requirements, and a coarse fraction which is returned to mill inlet. Recirculation factor, that is, the ratio of mill throughput to fresh feed is up to three. Beyond this, efficiency gains are minimal.

For more than 50years vertical mills have been the mill of choice for grinding raw materials into raw meal. More recently they have become widely used for cement production. They have lower specific energy consumption than ball mills and the separator, as in raw mills, is integral with the mill body.

In the Loesche mill, Fig. 2.23,16 two pairs of rollers are used. In each pair the first, smaller diameter, roller stabilises the bed prior to grinding which takes place under the larger roller. Manufacturers use different technologies for bed stabilisation.

Comminution in ball mills and vertical mills differs fundamentally. In a ball mill, size reduction takes place by impact and attrition. In a vertical mill the bed of material is subject to such a high pressure that individual particles within the bed are fractured, even though the particles are very much smaller than the bed thickness.

Early issues with vertical mills, such as narrower PSD and modified cement hydration characteristics compared with ball mills, have been resolved. One modification has been to install a hot gas generator so the gas temperature is high enough to partially dehydrate the gypsum.

For many decades the two-compartment ball mill in closed circuit with a high-efficiency separator has been the mill of choice. In the last decade vertical mills have taken an increasing share of the cement milling market, not least because the specific power consumption of vertical mills is about 30% less than that of ball mills and for finely ground cement less still. The vertical mill has a proven track record in grinding blastfurnace slag, where it has the additional advantage of being a much more effective drier of wet feedstock than a ball mill.

The vertical mill is more complex but its installation is more compact. The relative installed capital costs tend to be site specific. Historically the installed cost has tended to be slightly higher for the vertical mill.

Special graph paper is used with lglg(1/R(x)) on the abscissa and lg(x) on the ordinate axes. The higher the value of n, the narrower the particle size distribution. The position parameter is the particle size with the highest mass density distribution, the peak of the mass density distribution curve.

Vertical mills tend to produce cement with a higher value of n. Values of n normally lie between 0.8 and 1.2, dependent particularly on cement fineness. The position parameter is, of course, lower for more finely ground cements.

Separator efficiency is defined as specific power consumption reduction of the mill open-to-closed-circuit with the actual separator, compared with specific power consumption reduction of the mill open-to-closed-circuit with an ideal separator.

As shown in Fig. 2.24, circulating factor is defined as mill mass flow, that is, fresh feed plus separator returns. The maximum power reduction arising from use of an ideal separator increases non-linearly with circulation factor and is dependent on Rf, normally based on residues in the interval 3245m. The value of the comminution index, W, is also a function of Rf. The finer the cement, the lower Rf and the greater the maximum power reduction. At C = 2 most of maximum power reduction is achieved, but beyond C = 3 there is very little further reduction.

Separator particle separation performance is assessed using the Tromp curve, a graph of percentage separator feed to rejects against particle size range. An example is shown in Fig. 2.25. Data required is the PSD of separator feed material and of rejects and finished product streams. The bypass and slope provide a measure of separator performance.

The particle size is plotted on a logarithmic scale on the ordinate axis. The percentage is plotted on the abscissa either on a linear (as shown here) or on a Gaussian scale. The advantage of using the Gaussian scale is that the two parts of the graph can be approximated by two straight lines.

The measurement of PSD of a sample of cement is carried out using laser-based methodologies. It requires a skilled operator to achieve consistent results. Agglomeration will vary dependent on whether grinding aid is used. Different laser analysis methods may not give the same results, so for comparative purposes the same method must be used.

The ball mill is a cylindrical drum (or cylindrical conical) turning around its horizontal axis. It is partially filled with grinding bodies: cast iron or steel balls, or even flint (silica) or porcelain bearings. Spaces between balls or bearings are occupied by the load to be milled.

Following drum rotation, balls or bearings rise by rolling along the cylindrical wall and descending again in a cascade or cataract from a certain height. The output is then milled between two grinding bodies.

Ball mills could operate dry or even process a water suspension (almost always for ores). Dry, it is fed through a chute or a screw through the units opening. In a wet path, a system of scoops that turn with the mill is used and it plunges into a stationary tank.

Mechanochemical synthesis involves high-energy milling techniques and is generally carried out under controlled atmospheres. Nanocomposite powders of oxide, nonoxide, and mixed oxide/nonoxide materials can be prepared using this method. The major drawbacks of this synthesis method are: (1) discrete nanoparticles in the finest size range cannot be prepared; and (2) contamination of the product by the milling media.

More or less any ceramic composite powder can be synthesized by mechanical mixing of the constituent phases. The main factors that determine the properties of the resultant nanocomposite products are the type of raw materials, purity, the particle size, size distribution, and degree of agglomeration. Maintaining purity of the powders is essential for avoiding the formation of a secondary phase during sintering. Wet ball or attrition milling techniques can be used for the synthesis of homogeneous powder mixture. Al2O3/SiC composites are widely prepared by this conventional powder mixing route by using ball milling [70]. However, the disadvantage in the milling step is that it may induce certain pollution derived from the milling media.

In this mechanical method of production of nanomaterials, which works on the principle of impact, the size reduction is achieved through the impact caused when the balls drop from the top of the chamber containing the source material.

A ball mill consists of a hollow cylindrical chamber (Fig. 6.2) which rotates about a horizontal axis, and the chamber is partially filled with small balls made of steel, tungsten carbide, zirconia, agate, alumina, or silicon nitride having diameter generally 10mm. The inner surface area of the chamber is lined with an abrasion-resistant material like manganese, steel, or rubber. The magnet, placed outside the chamber, provides the pulling force to the grinding material, and by changing the magnetic force, the milling energy can be varied as desired. The ball milling process is carried out for approximately 100150h to obtain uniform-sized fine powder. In high-energy ball milling, vacuum or a specific gaseous atmosphere is maintained inside the chamber. High-energy mills are classified into attrition ball mills, planetary ball mills, vibrating ball mills, and low-energy tumbling mills. In high-energy ball milling, formation of ceramic nano-reinforcement by in situ reaction is possible.

It is an inexpensive and easy process which enables industrial scale productivity. As grinding is done in a closed chamber, dust, or contamination from the surroundings is avoided. This technique can be used to prepare dry as well as wet nanopowders. Composition of the grinding material can be varied as desired. Even though this method has several advantages, there are some disadvantages. The major disadvantage is that the shape of the produced nanoparticles is not regular. Moreover, energy consumption is relatively high, which reduces the production efficiency. This technique is suitable for the fabrication of several nanocomposites, which include Co- and Cu-based nanomaterials, Ni-NiO nanocomposites, and nanocomposites of Ti,C [71].

Planetary ball mill was used to synthesize iron nanoparticles. The synthesized nanoparticles were subjected to the characterization studies by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques using a SIEMENS-D5000 diffractometer and Hitachi S-4800. For the synthesis of iron nanoparticles, commercial iron powder having particles size of 10m was used. The iron powder was subjected to planetary ball milling for various period of time. The optimum time period for the synthesis of nanoparticles was observed to be 10h because after that time period, chances of contamination inclined and the particles size became almost constant so the powder was ball milled for 10h to synthesize nanoparticles [11]. Fig. 12 shows the SEM image of the iron nanoparticles.

The vibratory ball mill is another kind of high-energy ball mill that is used mainly for preparing amorphous alloys. The vials capacities in the vibratory mills are smaller (about 10 ml in volume) compared to the previous types of mills. In this mill, the charge of the powder and milling tools are agitated in three perpendicular directions (Fig. 1.6) at very high speed, as high as 1200 rpm.

Another type of the vibratory ball mill, which is used at the van der Waals-Zeeman Laboratory, consists of a stainless steel vial with a hardened steel bottom, and a single hardened steel ball of 6 cm in diameter (Fig. 1.7).

The mill is evacuated during milling to a pressure of 106 Torr, in order to avoid reactions with a gas atmosphere.[44] Subsequently, this mill is suitable for mechanical alloying of some special systems that are highly reactive with the surrounding atmosphere, such as rare earth elements.

In spite of the traditional approaches used for gas-solid reaction at relatively high temperature, Calka etal.[58] and El-Eskandarany etal.[59] proposed a solid-state approach, the so-called reactive ball milling (RBM), used for preparations different families of meal nitrides and hydrides at ambient temperature. This mechanically induced gas-solid reaction can be successfully achieved, using either high- or low-energy ball-milling methods, as shown in Fig.9.5. However, high-energy ball mill is an efficient process for synthesizing nanocrystalline MgH2 powders using RBM technique, it may be difficult to scale up for matching the mass production required by industrial sector. Therefore, from a practical point of view, high-capacity low-energy milling, which can be easily scaled-up to produce large amount of MgH2 fine powders, may be more suitable for industrial mass production.

In both approaches but with different scale of time and milling efficiency, the starting Mg metal powders milled under hydrogen gas atmosphere are practicing to dramatic lattice imperfections such as twinning and dislocations. These defects are caused by plastics deformation coupled with shear and impact forces generated by the ball-milling media.[60] The powders are, therefore, disintegrated into smaller particles with large surface area, where very clean or fresh oxygen-free active surfaces of the powders are created. Moreover, these defects, which are intensively located at the grain boundaries, lead to separate micro-scaled Mg grains into finer grains capable to getter hydrogen by the first atomically clean surfaces to form MgH2 nanopowders.

Fig.9.5 illustrates common lab scale procedure for preparing MgH2 powders, starting from pure Mg powders, using RBM via (1) high-energy and (2) low-energy ball milling. The starting material can be Mg-rods, in which they are processed via sever plastic deformation,[61] using for example cold-rolling approach,[62] as illustrated in Fig.9.5. The heavily deformed Mg-rods obtained after certain cold rolling passes can be snipped into small chips and then ball-milled under hydrogen gas to produce MgH2 powders.[8]

Planetary ball mills are the most popular mills used in scientific research for synthesizing MgH2 nanopowders. In this type of mill, the ball-milling media have considerably high energy, because milling stock and balls come off the inner wall of the vial and the effective centrifugal force reaches up to 20 times gravitational acceleration. The centrifugal forces caused by the rotation of the supporting disc and autonomous turning of the vial act on the milling charge (balls and powders). Since the turning directions of the supporting disc and the vial are opposite, the centrifugal forces alternately are synchronized and opposite. Therefore, the milling media and the charged powders alternatively roll on the inner wall of the vial, and are lifted and thrown off across the bowl at high speed.

In the typical experimental procedure, a certain amount of the Mg (usually in the range between 3 and 10g based on the vials volume) is balanced inside an inert gas atmosphere (argon or helium) in a glove box and sealed together with certain number of balls (e.g., 2050 hardened steel balls) into a hardened steel vial (Fig.9.5A and B), using, for example, a gas-temperature-monitoring system (GST). With the GST system, it becomes possible to monitor the progress of the gas-solid reaction taking place during the RBM process, as shown in Fig.9.5C and D. The temperature and pressure changes in the system during milling can be also used to realize the completion of the reaction and the expected end product during the different stages of milling (Fig.9.5D). The ball-to-powder weight ratio is usually selected to be in the range between 10:1 and 50:1. The vial is then evacuated to the level of 103bar before introducing H2 gas to fill the vial with a pressure of 550bar (Fig.9.5B). The milling process is started by mounting the vial on a high-energy ball mill operated at ambient temperature (Fig.9.5C).

Tumbling mill is cylindrical shell (Fig.9.6AC) that rotates about a horizontal axis (Fig.9.6D). Hydrogen gas is pressurized into the vial (Fig.9.6C) together with Mg powders and ball-milling media, using ball-to-powder weight ratio in the range between 30:1 and 100:1. Mg powder particles meet the abrasive and impacting force (Fig.9.6E), which reduce the particle size and create fresh-powder surfaces (Fig.9.6F) ready to react with hydrogen milling atmosphere.

Figure 9.6. Photographs taken from KISR-EBRC/NAM Lab, Kuwait, show (A) the vial and milling media (balls) and (B) the setup performed to charge the vial with 50bar of hydrogen gas. The photograph in (C) presents the complete setup of GST (supplied by Evico-magnetic, Germany) system prior to start the RBM experiment for preparing of MgH2 powders, using Planetary Ball Mill P400 (provided by Retsch, Germany). GST system allows us to monitor the progress of RBM process, as indexed by temperature and pressure versus milling time (D).

The useful kinetic energy in tumbling mill can be applied to the Mg powder particles (Fig.9.7E) by the following means: (1) collision between the balls and the powders; (2) pressure loading of powders pinned between milling media or between the milling media and the liner; (3) impact of the falling milling media; (4) shear and abrasion caused by dragging of particles between moving milling media; and (5) shock-wave transmitted through crop load by falling milling media. One advantage of this type of mill is that large amount of the powders (100500g or more based on the mill capacity) can be fabricated for each milling run. Thus, it is suitable for pilot and/or industrial scale of MgH2 production. In addition, low-energy ball mill produces homogeneous and uniform powders when compared with the high-energy ball mill. Furthermore, such tumbling mills are cheaper than high-energy mills and operated simply with low-maintenance requirements. However, this kind of low-energy mill requires long-term milling time (more than 300h) to complete the gas-solid reaction and to obtain nanocrystalline MgH2 powders.

Figure 9.7. Photos taken from KISR-EBRC/NAM Lab, Kuwait, display setup of a lab-scale roller mill (1000m in volume) showing (A) the milling tools including the balls (milling media and vial), (B) charging Mg powders in the vial inside inert gas atmosphere glove box, (C) evacuation setup and pressurizing hydrogen gas in the vial, and (D) ball milling processed, using a roller mill. Schematic presentations show the ball positions and movement inside the vial of a tumbler mall mill at a dynamic mode is shown in (E), where a typical ball-powder-ball collusion for a low energy tumbling ball mill is presented in (F).

'extreme' industrial ball mill 15 pound capacity ball mill : united nuclear , scientific equipment & supplies

Our 'Extreme' is our top of the line, largest capacity, industrial grade Ball Mill. The Extreme Ball Mill has a 17 pound capacity, and built to take massive abuse. All steel construction, heavy duty ball bearings, and an overload protected motor. The 17 lb. capacity barrel holds 18 cups in volume. Far more efficient than the smaller units due to the flat, 6 sided interior and large diameter barrel. The larger barrel diameter not only allows more room to hold material, but also allows the media room to accelerate creating a great deal more energy on impact - which translates into reduced & more efficient grinding time. This high-efficiency barrel design maximizes the milling action by forcing the grinding media to fall & impact on itself during rotation. Unlike our small barrel 3 & 6 Lb mills, the Extreme can use (optional) larger, 3/4" media, which dramatically increases grinding efficiency. Using both larger & standard size media sizes in your barrel always produces superior results as opposed to using a single size media. The machine base measures 11.5" wide, 13" long, and sits 11" tall with the media barrel. The barrel itself measures 9" diameter, has a hexagon shaped interior with a 7.5" opening, and a length of 8.5". Rock solid & simple to operate. Barrel and lid have an internal heavy duty Neoprene liner that provides a leak-proof seal. Built to last until the end of time. These units can also be used with liquid in the barrel without any worry of leakage. 115 volt , high performance, thermally protected motor rotates the barrel at 40 RPM. There is a 3 year warranty on unit and 1 year warranty on motor. The Extreme Ball Mill is available with a 120 volt motor (for use in the USA) or a 220/240 volt motor for overseas use for an additional $30. (select below). Note: Only use Lead or Antimony/Lead Media for grinding Black Powder or Black Powder based rocket propellant as they are completely non-sparking. Requires a minimum of 2 packs (200 balls) of 1/2" grinding media. You may also use the larger 3/4" media with this mill. The combination of 1/2" & 3/4" media greatly increases milling efficiency. Grinding media is not included - purchase grinding media (Lead, Steel or Ceramic Balls) here.

ball mill, ball grinding mill - all industrial manufacturers - videos

{{#each product.specData:i}} {{name}}: {{value}} {{#i!=(product.specData.length-1)}} {{/end}} {{/each}}

{{#each product.specData:i}} {{name}}: {{value}} {{#i!=(product.specData.length-1)}} {{/end}} {{/each}}

... LN2 feeding systems, jar and ball sizes, adapter racks, materials low LN2-consumption clearly structured user interface, memory for 9 SOPs programmable cooling and grinding cycles (10 ...

The XRD-Mill McCrone was specially developed for the preparation of samples for subsequent X-ray diffraction (XRD). The mill is used for applications in geology, chemistry, mineralogy and materials science, ...

The Planetary Ball Mill PM 200, engineered by Retsch, is a milling device best suited for mixing and size reduction processes and is also capable of meeting the necessary requirements for colloidal grinding ...

... Micro Mill PULVERISETTE 0 is the ideal laboratory mill for fine comminution of medium-hard, brittle, moist or temperature-sensitive samples dry or in suspension as well as for homogenising of emulsions ...

... , fast, effective. WORKING PRINCIPLE Impact and friction The FRITSCH Mini-Mill PULVERISETTE 23 grinds the sample through impact and friction between grinding balls and the inside wall of the grinding ...

... grinding mills includes being safe throughout. When the mills are quoted we make sure to include any and all safety components needed. Long life and minimum maintenance To help you get the most of your ...

Annular gap and agitator bead mills are used for processing suspensions and highly viscous products in chemicals and cosmetics as well as in the food sector. Studies have shown that annular gap bead ...

... Pneumatic extraction from the surface of the agitated media bed Wet grinding: Separation of suspension from the agitated media by ball retaining device Flexibility Through careful selection of the size and quantity ...

... details; Agitating power: 0,37 kW Total Power Consumption : 1.44 kW Total Weight : 100 kg Metal Ball Size : 6.35 mm Metal Ball Amount : 7 kg Cold water consumption : 10 liters / hour ...

Cement Ball Mill Processing ability: - 200 t/h Max feeding size: - 25 mm Product Fineness: - 0.074-0.89mm Range of application: - limestone, calcium carbonate, clay, dolomite and other minerals ...

... grinds and classifies a product. Vilitek MBL-NK-80 mill is specially designed for grinding valuable materials, which, when grinding, the re-milled fractions are not a commodity product. In particular, this mill ...

Dimensions: Height: 1530 mm Width: 650 mm Length : 1025 mm Description: Ball mills are capable of rapidly producing chocolate, nut pastes (for gianduia), and spreadable creams. It has been ...

ball mill, custom engineering & manufacturing near tollesboro, ky

"Shane Wallingford and his team have become valuable members of our industrial ecosystem. JSB Industrial Solutions has become the single source manufacturer for our hydraulic closing units, the foundation of safety systems when extracting hydrocarbons in the oil and gas industry."

"Shane Wallingford and his team have become our go to supplier for ball mills and ball mill lid replacements... They perform quality work in a timely manner and are always available for one on one conversations when questions or consultations are needed."

used ball mills | ball mills for sale | phoenix equipment

Why buy a brand new ball mill when we have high-quality used and refurbished ball mills for sale? Well-made industrial equipment from top manufacturers maintain their value and save your company or industry substantially.

Ball mills are a fundamental part of the manufacturing industry in the USA as well as around the world. Ball mills crush material into various sizes and extract resources from mined materials. Pebble mills are a type of ball mill and are also used to reduce the size of hard materials, down to 1 micron or less.

Because of their fairly simple design, ball mills and pebble mills are less likely to need costly repairs (unlike other crushing or extraction equipment) making them an attractive option for businesses on a budget.

Unused 24 x 41 Polysius EGL Ball Mill. Steel Lined. Twin 7MW Electric Motor Drives, 14MW/11kV Power Supply Unit. Twin Combiflex Fixed Speed Gear Drive. Auxiliary Drive Motors, Lubrication Unit Fixed Bearing and Lubrication Unit Floating Bearing, Frozen Charge Protection System, Vibration Sensors for COMBIFLEX, Dam Ring, Permanent installed Centrifuge for Fixed Bearing, Closed Circuit Chiller Unit, Insurance and Commissioning Spares, Special Tools. Qty 2 Available.

Used 11.5' diameter X 17' long ball mill. Manufactured by KVS (Kennedy Van Saun). 1000 HP open winding synchronous motor. Features trommel discharge and feed tank. Refurbished in 2013, which included installation of new oil jacking system, oil lube system for Babbitt bearings, new titanium steel water jet-machined discharge grates, and motor refurbishment. Set of new babbit bearings available. Previously operated as a closed circuit dry mill with grinding capacity of 40 metric tons per hour with output fineness of >80% passing 200 mesh. Motor operating speed of 15.8 RPM charged with approximately 78 tons of 1", 2" and 3" steel balls. Last used at a phosphate processing facility and in good condition.

Used 8' x 10' Epworth 200 HP jacketed steel ball mill, approximately 8' diameter x 10' long, jacketed chamber, gear and pinion driven with approximately 200 motor drive, on stands, Serial# K-0845.

Used 175HP Hosokawa Alpine Super Orion Continuous Ball mill. Model 195/495 CLKE. Alumina Oxide lined. 195 cm (76")inner diameter x 495 cm (194") long drum, periphery dry discharge with adjustable discharge openings, enclosed discharge housing, direct driven thru gearbox. 175HP 460 volt motor with VFD motor controller. Serial# C1198474. Built 2012.

Used 6' x 8' Paul Abbe jacketed 100 HP steel ball mill, approximately 6' diameter x 8' long, jacketed chamber, gear and pinion driven with approximately 100 motor drive, on stands.

Unused 5' diameter X 6' long Steel Lined Ball Mill, manufactured by Patterson Industries, Type D, non-jacketed, with AR400 steel liners. Includes 30 HP, 3 phase, 60 Hz, 230-460 V, 1725 RPM motor. Mill drive is integrally coupled to horizontal parallel shafted helical gear reducer. Continuous type, with product feeding through spiral inlet trunnion and exiting through the discharge end trunnion. Features cylinder manway access door for cleaning. Internal volume measures approximately 839 USG (112 CF). Mill shell is lined with (24) 1/4" thick liner plates, each head lined with (8) 3/8" thick pie-shaped liner plates. Mounted on stand with approximately 66" clearance between the mill cylinder and floor. Mills were intended for use in glass particle size reduction but were never installed. Manufactured in 2019, units are still in factory plastic wrap and in new condition. (Qty - 2 available)

Used 5 ft. dia. x 6 ft. (Approx 120 Cu.Ft) Patterson Pebble Mill. Alumina brick lining. On stand with 20 HP motor and gear reduced drive with brake. Bull gear and pinion. Babbit bearings. Door is polyurethane and has a drain with plug.

Used 4' x 5' (345 Gallon Total/210 Gallon Working) Ball Mill. Mfg Steveco. Steel Lining. Jacketed. 20 HP (460V/60Hz/3ph) Gear Reduced heavy duty drive on high stands. Solid door and discharge door.

Used Paul O. Abbe One Piece Ceramic Ball Mill, Model JM-300. Non-Jacketed chamber approximate 24.8" diameter x 39.5" long. Vessel volume 300 liter (79 gallons). Approximate 5" charge and discharge port with cover. Driven by a 3 HP, 3/60/208-230/460 volt 1760 rpm motor with a shaft mounted Sumitomo Model 203E-25 reducer. Approximate 32 rpm drum speed. Includes a control panel with an ABB drive. Mounted on a common carbon steel frame legs. Serial # 0830032JM. Built 2008.

Used 28 Gallon Paul O. Abbe Ceramic Jar / Ball Mill. Approximate 3.7 Cubic Feet. Approximate 20" diameter x 20" straight side. Includes motor and cage. Mounted on a carbon steel frame with safety cage.

Used 30 gallon Paul O. Abbe Jar Mill. Porcelain jar 21" diameter x 18" straight side. Driven by 1hp, 1/60/115/230 volt, 1740 rpm motor thru a reducer, ratio 9.3 to 1. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial#84876

Used 25 Gallon Norton Chemical Process Products Jar Mill. Porcelain jar 20" diameter x 20" straight side. Driven by 1hp, 3/60/230/460 volt, 1730 rpm motor thru a reducer, no ratio. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial# AV-83104.

Used 35.30 Gallon Paul O. Abbe Jar Mill. Model 5A Porcelain jar 22" diameter x 20" straight side. Driven by 1hp, 3/60/230/460 volt, 1745 rpm motor thru a reducer, ratio 25 to 1. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial#A41563.

Unused 24 x 41 Polysius EGL Ball Mill. Steel Lined. Twin 7MW Electric Motor Drives, 14MW/11kV Power Supply Unit. Twin Combiflex Fixed Speed Gear Drive. Auxiliary Drive Motors, Lubrication Unit Fixed Bearing and Lubrication Unit Floating Bearing, Frozen Charge Protection System, Vibration Sensors for COMBIFLEX, Dam Ring, Permanent installed Centrifuge for Fixed Bearing, Closed Circuit Chiller Unit, Insurance and Commissioning Spares, Special Tools. Qty 2 Available.

Used 11.5' diameter X 17' long ball mill. Manufactured by KVS (Kennedy Van Saun). 1000 HP open winding synchronous motor. Features trommel discharge and feed tank. Refurbished in 2013, which included installation of new oil jacking system, oil lube system for Babbitt bearings, new titanium steel water jet-machined discharge grates, and motor refurbishment. Set of new babbit bearings available. Previously operated as a closed circuit dry mill with grinding capacity of 40 metric tons per hour with output fineness of >80% passing 200 mesh. Motor operating speed of 15.8 RPM charged with approximately 78 tons of 1", 2" and 3" steel balls. Last used at a phosphate processing facility and in good condition.

Used 8' x 10' Epworth 200 HP jacketed steel ball mill, approximately 8' diameter x 10' long, jacketed chamber, gear and pinion driven with approximately 200 motor drive, on stands, Serial# K-0845.

Used 175HP Hosokawa Alpine Super Orion Continuous Ball mill. Model 195/495 CLKE. Alumina Oxide lined. 195 cm (76")inner diameter x 495 cm (194") long drum, periphery dry discharge with adjustable discharge openings, enclosed discharge housing, direct driven thru gearbox. 175HP 460 volt motor with VFD motor controller. Serial# C1198474. Built 2012.

Used 6' x 8' Paul Abbe jacketed 100 HP steel ball mill, approximately 6' diameter x 8' long, jacketed chamber, gear and pinion driven with approximately 100 motor drive, on stands.

Unused 5' diameter X 6' long Steel Lined Ball Mill, manufactured by Patterson Industries, Type D, non-jacketed, with AR400 steel liners. Includes 30 HP, 3 phase, 60 Hz, 230-460 V, 1725 RPM motor. Mill drive is integrally coupled to horizontal parallel shafted helical gear reducer. Continuous type, with product feeding through spiral inlet trunnion and exiting through the discharge end trunnion. Features cylinder manway access door for cleaning. Internal volume measures approximately 839 USG (112 CF). Mill shell is lined with (24) 1/4" thick liner plates, each head lined with (8) 3/8" thick pie-shaped liner plates. Mounted on stand with approximately 66" clearance between the mill cylinder and floor. Mills were intended for use in glass particle size reduction but were never installed. Manufactured in 2019, units are still in factory plastic wrap and in new condition. (Qty - 2 available)

Used 5 ft. dia. x 6 ft. (Approx 120 Cu.Ft) Patterson Pebble Mill. Alumina brick lining. On stand with 20 HP motor and gear reduced drive with brake. Bull gear and pinion. Babbit bearings. Door is polyurethane and has a drain with plug.

Used 4' x 5' (345 Gallon Total/210 Gallon Working) Ball Mill. Mfg Steveco. Steel Lining. Jacketed. 20 HP (460V/60Hz/3ph) Gear Reduced heavy duty drive on high stands. Solid door and discharge door.

Used Paul O. Abbe One Piece Ceramic Ball Mill, Model JM-300. Non-Jacketed chamber approximate 24.8" diameter x 39.5" long. Vessel volume 300 liter (79 gallons). Approximate 5" charge and discharge port with cover. Driven by a 3 HP, 3/60/208-230/460 volt 1760 rpm motor with a shaft mounted Sumitomo Model 203E-25 reducer. Approximate 32 rpm drum speed. Includes a control panel with an ABB drive. Mounted on a common carbon steel frame legs. Serial # 0830032JM. Built 2008.

Used 28 Gallon Paul O. Abbe Ceramic Jar / Ball Mill. Approximate 3.7 Cubic Feet. Approximate 20" diameter x 20" straight side. Includes motor and cage. Mounted on a carbon steel frame with safety cage.

Used 30 gallon Paul O. Abbe Jar Mill. Porcelain jar 21" diameter x 18" straight side. Driven by 1hp, 1/60/115/230 volt, 1740 rpm motor thru a reducer, ratio 9.3 to 1. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial#84876

Used 25 Gallon Norton Chemical Process Products Jar Mill. Porcelain jar 20" diameter x 20" straight side. Driven by 1hp, 3/60/230/460 volt, 1730 rpm motor thru a reducer, no ratio. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial# AV-83104.

Used 35.30 Gallon Paul O. Abbe Jar Mill. Model 5A Porcelain jar 22" diameter x 20" straight side. Driven by 1hp, 3/60/230/460 volt, 1745 rpm motor thru a reducer, ratio 25 to 1. Inlet & outlet with cover and clamp. Mounted on carbon steel legs with a discharge housing. Serial#A41563.

Phoenix Equipment is a global supplier of used ball mills. We have new, used and reconditioned ball mills from leading manufacturers, including: Paul O. Abbe Retsch Epworth Patterson Netzsch Newell Dunford Marcy Denver FL Smidth Nordberg Allis Chalmers Metso Hardinge Kurimoto Iron Works Kobe-Allis Chalmers Stevenson Fuller-Traylor Steveco Western Machinery Marion Machine Makrum and more. Ball mills are used in a wide-range of industrial applications: cement processing, paint dyes and pigmentation processing, coal and ore processing, chemical processing and pyrotechnics, and many others. Ball milling has several key advantages over other systems: cost of the grinding medium and installation is generally low works for batch or continuous operation (as well as closed-circuit grinding) suitable for a wide range of materials simple design ensures less repairs Whether you are in the market for a used ball mill for your business or you have a pre-owned ball mill youd like to sell, USA-based Phoenix Equipment can help. Contact us today to learn more about what Phoenix can do for you. Related equipment: Agitators, Screen/Separators, Kilns and Calciners, Scales and Extruders. Fill out our quick and easy quote form for more information about our Ball Mills inventory.

Ball mills are used in a wide-range of industrial applications: cement processing, paint dyes and pigmentation processing, coal and ore processing, chemical processing and pyrotechnics, and many others.

Whether you are in the market for a used ball mill for your business or you have a pre-owned ball mill youd like to sell, USA-based Phoenix Equipment can help. Contact us today to learn more about what Phoenix can do for you.

Phoenix Equipment buys and sells used chemical process equipment and plants for relocation. Our industry focus includes process plants and machinery in the chemical, petrochemical, fertilizer, refining, gas processing, power generation, pharmaceutical and food manufacturing industries. We have extensive experience acquiring processing plants and process lines that require the execution of complex dismantlement, demolition and decommissioning projects. Based in Red Bank, New Jersey, USA, we have team members located in China, India, Germany and relationships throughout the world.

Why Use Phoenix for Your Plant Dismantling & Plant Relocation Needs A Common Plant Liquidation Scenario Your company has made the tough decision to close a plant. This plant was running for years, and the company paid a lot to have it built, paid everyones salaries, and maintained or even modernized all of the production assets over the plants life but the plant needs to be sold off for one reason or another. Your company has called upon you to recover as much dollar as you can to help keep the organization alive, and better yet, healthy, in what is a constant battle in the marketplace. Youve either: Have spent months, maybe even years trying to find a buyer that would operate the plant in place, without any success, while the plants assets lose value every passing day. Or, you cant sell it to another company, as you are one of the few suppliers of the product the plant makes, and you dont want to create a competitor, or improve a competitors position. Or, the plant is on leased propert

Hydrogenation: Major Applications Hydrogenation is a billion-dollar industry. Hydrogenating means to add hydrogen to something. According to Haldor Topsoe, hydrogenation comprises 48% of total hydrogen consumption, 44% of which is for hydrocracking and hydrotreating in refineries , and 4% for hydrogenation of unsaturated hydrocarbons (including hardening of edible oil) and of aromatics, hydrogenation of aldehydes and ketones (for instance oxo-products), and hydrogenation of nitrobezene (for manufacture of aniline). Hydrocracking & Hydrotreating Industrially, hydrotreating and hydrocracking are performed in down flow trickle bed reactors, where the gas and the liquid feed are sent concurrently through a fixed bed plug flow reactor. Although the flow pattern in the reactor can be reasonably approximated, the observed kinetics in such a trickle bed reactor are quite often affected by minor unplanned oscillations in the flow. How the gas and liquid collide and mix together affects the end prod

Thermoplastics A Focus on Polyethylene & Polypropylene Thermoplastics are a class of polymers, that with the application of heat, can be softened and melted, and can be processed either in the heat-softened state (e.g. by thermoforming) or in the liquid state (e.g. by extrusion and injection molding). Over 70% of the plastics used in the world are thermoplastics, and the two most commonly used thermoplastics are both olefins, compound made up of hydrogen and carbon that contains one or more pairs of carbon atoms linked by a double bond. These two olefins are polyethylene and polypropylene. Polyethylene Polyethylene is a tough, light, flexible synthetic resin made by polymerizing ethylene, chiefly used for plastic bags, food containers, and other packaging. It may be of low density or high density depending upon the process used in its manufacturing. It is resistant to moisture and most of the chemicals. It can be heat sealed and is flexible at room temperature (and low temperature), and in additional to its material properties,

industrial ball mills: steel ball mills and lined ball mills | orbis

Particle size reduction of materials in a ball mill with the presence of metallic balls or other media dates back to the late 1800s. The basic construction of a ball mill is a cylindrical container with journals at its axis. The cylinder is filled with grinding media (ceramic or metallic balls or rods), the product to be ground is added and the cylinder is put into rotation via an external drive causing the media to roll, slide and cascade. Lifting baffles are supplied to prevent the outer layer of media to simply roll around the cylinder.

Mill cylinders are typically supplied with a cooling jacket on their cylindrical portion for temperature control, especially when processing temperature-sensitive materials. For extreme temperatures, the ends of the cylinder can also be furnished with cooling apparatus.

ball mill, ball grinding mill - all industrial manufacturers - videos - page 2

RAPID MILL WITH PLANETARY DRIVE, "MAGELLANO" SERIES, MOD. MAG3000/C WITH 4 ROTATING UNIT The requirement of some laboratories in the ceramic industry to be able to rapidly grind large frit quantities, led Ceramic ...

... Convenient in maintenance. Working Principle The Ball mill 9001800 can be divided into lattice type and overflow type according to different beneficiation methods, and this machine is two lattice-type ...

High operational reliability, stable performance, simple structure and easy maintenance. Model with speed controller available.(Model : J-BM1-S) Displays realtime operation speed utilizing rpm meter.(Model : J-BM1-S)

The Laboratory Ball Mill is primarily designed for grinding pigments and cement. The material is ground at a specific speed for a specific period using a specific quantity of grinding steel balls. ...

grinding mill design & ball mill manufacturer

All Grinding Mill & Ball Mill Manufacturers understand the object of the grinding process is a mechanical reduction in size of crushable material. Grinding can be undertaken in many ways. The most common way for high capacity industrial purposes is to use a tumbling charge of grinding media in a rotating cylinder or drum. The fragmentation of the material in that charge occurs through pressure, impact, and abrasion.

The choice of mill design depends on the particle size distribution in the feed and in the product wanted. Often the grinding is more economic when executed in a primary step, followed by a secondary step, giving a fine size product.

C=central trunnion discharge P=peripheral discharge R=spherical roller trunnion bearing, feed end H=hydrostatic shoe bearing, feed end R=spherical roller trunnion bearing, discharge end K=ring gear and pinion drive

Type CHRK is designed for primary autogenous grinding, where the large feed opening requires a hydrostatic trunnion shoe bearing. Small and batch grinding mills, with a diameter of 700 mm and more, are available. These mills are of a special design and described on special request by allBall Mill Manufacturers.

The different types of grinding mills are based on the different types of tumbling media that can be used: steel rods (rod mills), steel balls (ball mills), and rock material (autogenous mills, pebble mills).

The grinding charge in a rod mill consists of straight steel rods with an initial diameter of 50-100 mm. The length of the rods is equal to the shell length inside the head linings minus about 150 mm. The rods are fed through the discharge trunnion opening. On bigger mills, which need heavy rods, the rod charging is made with a pneumatic or manual operated rod charging device. The mill must be stopped every day or every second day for a few minutes in order to add new rods and at the same time pick out broken rod pieces.

As the heavy rod charge transmits a considerable force to each rod, a rod mill can not be built too big. A shell length above 6100 mm can not be recommended. As the length to diameter ratio of the mill should be in the range of 1,2-1,5, the biggest rod mill will convert maximum 1500 kW.

Rod mills are used for primary grinding of materials with a top size of 20-30 mm (somewhat higher for soft materials). The production of fines is low and consequently a rod mill is the right machine when a steep particle size distribution curve is desired. A product with 80% minus 500 microns can be obtained in an economical manner.

The grinding charge in a ball mill consist of cast or forged steel balls. These balls are fed together with the feed and consequently ball mills can be in operation for months without stopping. The ball size is often in the diameter range of 20-75 mm.

The biggest size is chosen when the mill is used as a primary grinding mill. For fine grinding of e.g. sands, balls can be replaced by cylpebs, which are heat treated steel cylinders with a diameter of 12-40 mm and with the same length as the diameter.

Ball mills are often used as secondary grinding mills and for regrinding of middlings in concentrators. Ball mills can be of the overflow or of the grate discharge type. Overflow discharge mills are used when a product with high specific surface is wanted, without any respect to the particle size distribution curve. Overflow discharge mills give a final product in an open circuit. Grate discharge mills are used when the grinding energy shall be concentrated to the coarse particles without production of slimes. In order to get a steep particle size distribution curve, the mill is used in closed circuit with some kind of classifier and the coarse particles known as classifier underflow are recycled. Furthermore, it should be observed that a grate discharge ball mill converts about 20% more energy than an overflow discharge mill with the same shell dimensions.

Ball mill shells are often furnished with two manholes. Ball mills with small balls or cylpebs can produce the finest product of all tumbling mills. 80% minus 74 microns is a normal requirement from the concentrators.The CRRK series of wet grinding ball mills are tabulatedbelow.

No steel grinding media is used in a fully autogenous mill. When choosing primary autogenous grinding, run of mine ore up to 200-300 mm in size is fed to the mill. When using a crushing step before the grinding, the crusher setting should be 150-200 mm. The feed trunnion opening must be large enough to avoid plugging. The biggest pieces in the mill are important for the size reduction of middle size pieces, which in their turn are important for the finer grinding. Thus the tendency of the material to be reduced in size by pressure, impact, and abrasion is a very important question when primary autogenous grinding is proposed.

When autogenous grinding is used in the second grinding step, the grinding media is size-controlled and often in the range of 30-70 mm. This size is called pebbles and screened out in the crushing station and fed to the mill in controlled proportion to the mill power. The pebble weight is 5-25% of the total feed to the plant, depending on the strength of the pebbles. Sometimes waste rock of high strength is used as pebbles.

Pebble mills should always be of the grate discharge type. The energy that can be converted in a mill depends on the total weight of the grinding charge. Consequently, pebble mills convert less power per mill volume unit than rod and ball mills.

High quality steel rods and balls are a considerable part of the operating costs. Autogenous grinding should, therefore, be considered and tested when a new plant shall be designed. As a grinding mill is built to last for decades, it is more important to watch the operation costs than the price of the mill installation. The CRRK series of wet grinding pebble mills are tabulated below.

Wet grinding is definitely the most usual method of grinding minerals as it incorporates many advantages compared to dry grinding. A requirement is, however, that water is available and that waste water, that can not be recirculated, can be removed from the plant without any environmental problems. Generally, the choice depends on whether the following processing is wet or dry.

When grinding to a certain specific surface area, wet grinding has a lower power demand than dry grinding. On the other hand, the wear of mill lining and grinding media is lower in dry grinding. Thus dry grinding can be less costly.

The feed to a dry grinding system must be dried if the moisture content is high. A ball mill is more sensitive to clogging than a rod mill. An air stream through the mill can reduce the moisture content and thus make a dry grinding possible in certain applications.

Due to the hindering effect that the ball charge gives to the material flow in dry grinding, the ball charge is not more than 28-35% of the mill volume. This should be compared with 40-45% in wet grinding. The expression used for this phenomenon is that the charge in a dry grinding mill is swollen.

Big dry grinding ball mills are often two-compartment mills, with big balls in the first compartment and small balls or cylpebs in the second one. An extra grate wall is used to separate the two charges.

The efficiency of wet grinding is affected by the percentage of solids. If the pulp is too thick, the grinding media becomes covered by too thick a layer of material, which hinders grinding. The opposite effect may be obtained if the dilution is too high, and this may also reduce the grinding efficiency. A high degree of dilution may sometimes be desirable in order to suppress excessive slime formation.

The specific power required for a certain grinding operation, usually expressed in kWh/ton, is a function of both the increase in the specific surface of the material (expressed in cm/cm or cm/g) and of the grinding resistance of the material. This can be expressed by the formula

where c is a material constant representing the grinding resistance, and So and S are the specific surfaces of the material before and after the grinding operation respectively. The formula is an expression of Rittingers Law which is shown by tests to be reasonably accurate up to a specific surface of 10,000 cm/cm.

When the grinding resistance c has been determined by trial grinding to laboratory scale, the net power E required for each grinding stage desired may be determined by the formula, at least as long as Rittingers Law is valid. If grinding is to be carried out not to a certain specific surface S but to a certain particle size k, the correlation between S and k must be determined. The particle size is often expressed in terms of particle size at e.g. 95, 90 or 80% quantity passing and is denoted k95, k90 or k80.

where E =the specific power consumption expressed in kWh/short ton. Eo = a proportionality and work factor called work index k80p = particle size of the product at 80% passage (micron) k80f =the corresponding value for the raw material (micron)

The value of Eo is a function of the physical properties of the raw material, the screen analyses of the product and raw material respectively, and the size of the mill. The value for easily-ground materials is around 7, while for materials that have a high grinding resistance the value is around 17.

Eo is correlated to a certain reduction ratio, mill diameter etc. Corrections must be made for each case. The simplest method of calculating the specific power consumption is test grinding in a laboratory mill, and comparison of the results with a known reference material. The sample is ground in batches for 3, 6,12 minutes, a screen analysis is carried out after each period, after which the specific surface is determined. A good estimate of the grinding characteristics of the sample can be obtained by comparison of the specific surfaces with corresponding values for the reference material.

When the net power required has been determined, an allowance is made for mechanical losses. The gross power requirement thus arrived at, should with a satisfactory margin be utilised by the mill selected.

The critical speed of a rotating mill is the RPM at which a grinding medium will begin to centrifuge, namely will start rotating with the mill and therefore cease to carry out useful work. This will occur at an RPM of ncr, which may be determined by the formula

where D is the inside diameter in meters of the mill. Mills are driven in practice at a speed corresponding to 60-80% of the critical speed, the choice of speed being influenced by economical considerations. Within that range the power is nearly proportional to the speed.

The charge volume in the case of rod and ball mills is a measure of the proportion of the mill body that is filled by rods or balls. When the mill is stationary, raw material and liquid should fill the voids between the grinding media, in order that these should be fully utilized.

Maximum mill efficiency is reached at a charge volume of approximately 55%, but for a number of reasons 45-50% is seldom exceeded. The efficiency curve is in any case quite flat about the maximum. In overflow mills the charge volume is usually 40%, while there is a greater choice in the case of grate discharge mills.

For coarse grinding in rod mills, the rods used have a diameter of 50-100 mm and their lengths are approx. 150 mm below the effective inside shell length. Rods will break when they have been worn down to about 20 mm and broken rods must from time to time be taken out of the mill since otherwise they will reduce the mill capacity and may cause blockage through piling up. The first rod charge should also contain a number of rods of smaller diameter.

It may be necessary to charge the mill with rods of smaller diameter when fine grinding is to be carried out in a rod mill. Experience shows that the size of the grinding media should bear a definite relationship to the size of both the raw material and the finished product in order that optimum grinding may be achieved. The largest grinding media must be able to crush and grind the largest pieces of rock, while on the other hand the grinding media should be as small as possible since the total active surface increases in inverse proportion to the diameter.

A crushed mineral whose largest particles pass a screen with 25 x 25 mm apertures shall be ground to approx. 95% passing 0.1 mm in a 2.9 x 3.2 m ball mill of 35 ton charge weight. In accordance with Olewskis formula

Grinding media wear away because of the attrition they are subjected to in the course of the grinding operation, and in addition a continuous reduction in weight takes place owing to corrosion. The rate of wear will in the first place depend on the abrasive properties of the mineral being ground and naturally also on the hardness of the grinding media themselves.

The wear of rods and balls is usually quoted in grammes per ton of material processed (dry weight) and normal values may lie between 100 and 1500 g/ton. Considerably higher wear figures may however be experienced in fine wet grinding of e.g. very hard siliceous sand.

A somewhat more accurate way of expressing wear is to state the amount of gross kWh of grinding power required to consume 1 kg of grinding media. A normal value in wet grinding is 15 kWh/kg.The wear figures in dry grinding are only 10-30 % of the above.

where c is a constant which, inter alia, takes into consideration the mean slope a of the charge, W is the weight in kp of the charge n is the RPM Rg is the distance in metres of the centre of gravity from the mill centre

W for rod and ball mills shall be taken as the weight of the rod or ball charge, i.e. the weight of the pulp is to be ignored. For pebble mills therefore W is to be calculated on the basis of the bulk weight of the pebbles.

It should be pointed out that factor c in the formula is a function of both the shape of the inner lining (lifter height etc.) and the RPM. The formula is however valid with sufficient accuracy for normal speeds and types of lining.

The diagram gives the values of the quantity Rg/d as a function of the charge volume, the assumption being that the charge has a plane surface and is homogeneous, d is the inside diameter of the mill in metres. The variation of the quantity a/d, where a is the distance between the surface of the charge and the mill centre, is also shown in the same figure.

In order to keep manufacturing costs at a minimum level, Morgardshammar has a series of standard mill diameters up to and including 6.5 m. Shell length, however, can be varied and tailor made for each application. The sizes selected are shown on the tables on page 12-13 and cover the power range of 200-5000 kW.

Shells with a diameter of up to about 4 m are made in one piece. Above this dimension, the shell is divided into a number of identical pieces, bolted together at site, in order to facilitate the transport. The shell is rolled and welded from steel plate and is fitted with welded flanges of the same material. The flanges are machined in order to provide them with locating surfaces fitting into the respective heads. The shells of ball and pebble mills are provided with 2 manholes with closely fitting covers. The shells have drilled holes for different types of linings.

Heads with a diameter of up to about 4 m are integral cast with the trunnion in one piece. Above this diameter the trunnion is made as a separate part bolted to the head. The head can then be divided in 2 or 4 pieces for easy transport and the pieces are bolted together at site. The material is cast steel or nodular iron. The heads and the trunnions have drilled holes for the lining.

Spherical roller (antifriction) bearings are normally used. They offer the most modern and reliable technology and have been used for many years. They are delivered with housings in a new design with ample labyrinth seals.

For very large trunnions or heavy mills, i.e. for primary autogenous grinding mills. Morgardshammar uses hydrostatic shoe bearings. They have many of the same advantages as roller bearings. They work with circulating oil under pressure.

The spherical roller bearing and the hydrostatic shoe bearing take a very limited axial space compared to a conventional sleeve bearing. This means that the lever of the bearing load is short. Furthermore, the bending moment on the head is small and as a result of this, the stress and deformation of the head are reduced. Ask Morgardshammar for special literature on trunnion bearings.

Ring gears are often supplied with spur gears. They are always split in 2 or 4 pieces in order to facilitate the assembly. Furthermore, they are symmetrical and can be turned round in order to make use of both tooth flanks. The material is cast steel or nodular iron. They are designed in accordance with AGMA.The ring gear may be mounted on either the feed or the discharge head. It is fitted with a welded plate guard.

The pinion and the counter shaft are integral forged and heat treated of high quality steel. For mill power exceeding about 2500 kW two pinions are used, one on each side of the mill (double-drive). The pinion is supported on two spherical roller bearings.

The trunnion bearings are lubricated by means of a small motor- driven grease lubricator. The gear ring is lubricated through a spray lubricating system, connected to the electric and pneumatic lines. The spray nozzles are mounted on a panel on the gear ring guard.

In order to protect the parts of the mill that come into contact with the material being ground, a replaceable lining of wear-resistant material is fitted. This may take the form of unalloyed or alloyed rolled or cast steel, heat treated if required, or rubber of the appropriate wear resistant quality. White cast iron, unalloyed or alloyed with nickel (Ni-hard), may also be used.

The shape of the mill lining is often of Lorain-type, consisting of plates held in place between lifter bars (or key bars) of suitable height bolted on to the shell. This system is used i.e. of all well-known manufacturers of rubber linings. Ball mills and autogenous mills with metal lining also can be provided with single or double waved plates without lifter bars.

In grate discharge mills the grate and the discharge lifters are a part of the lining. The grate plates with tapered slots or holes are of metal or rubber design. The discharge lifters are fabricated steel with thick rubber coating. Rubber layer for metal linings and heavy corner pieces of rubber are included in a Morgardshammar delivery as well as attaching bolts, washers, seal rings, and self-locking nuts. A Morgardshammar overflow mill can be converted into a grate discharge mill only by changing some liner parts and without any change of the mill. Trunnion liners are rubber coated fabricated steel or cast steel. In grate discharge mills the center cone and the trunnion liner form one piece.

Scoop feeders in combination with drum feeders are used when retaining oversize from a spiral or rake classifier. As hydrocyclones are used in most closed grinding circuits the spout feeders are used most frequently.

Vibrating feeders or screw feeders are used when charging feed to dry grinding mills. Trommel screens are used to protect slurry pumps and other transport equipment from tramp iron. Screens can have perforated rubber sheets or wire mesh. The trommel screens are bolted to the discharge trunnion lining.

Inching units for slow rotation of the mills are also furnished. Rods to the rod mills are charged by means of manual or automatic rod charges. Erection cradles on hydraulic jacks are used when erecting medium or big size mills at site.

A symbol of dependable quality ore milling machinery manufacturing, industrial and mining equipment, ball mills and rod mills as well as supplies created for your specific needs. During this period thousands of operators have experienced continuous economical and unequalled service through their use.As anindustrial ball mill manufacturer and supplier, we havecontinuously accumulated knowledge on grinding applications. It has contributed greatly to the grinding process through the development and improvement of such equipment.

Just what is grinding? It is the reduction of lump solid materials to smaller particles by the application of shearing forces, pressure, attrition, impact and abrasion. The primary consideration, then, has been to develop some mechanical means for applying these forces. The modern grinding mill applies power to rotate the mill shell and thus transmits energy to some form of media which, in turn, fractures individual particles.

Through constant and extensive research, in the field of grinding as well as in the field of manufacturing. Constantly changing conditions provide a challenge for the future. Meeting this challenge keeps our company young and progressive. This progressive spirit, with the knowledge gained through the years, assures top quality equipment for the users of our mills.

You are urged to study the following pages which present a detailed picture of our facilities and discuss the technical aspects of grinding. You will find this data helpful when considering the selection of the grinding equipment.

It is quite understandable that wetakes pride in the quality of our mills.Complementing the human craftsmanship built into these mills, our plants are equipped with modern machines of advanced design which permit accurate manufacturing of each constituent part. Competent supervision encourages close inspection of each mill both as to quality and proper fabrication. Each mill produced is assured of meeting the high required standards. New and higher speed machines have replaced former pieces of equipment to provide up-to-date procedures. The use of high speed cutting and drilling tools has stepped up production, thereby reducing costs and permitting us to add other refinements and pass these savings on to you, the consumer.

Each foundry heat is checked metallurgically prior to pouring. All first castings of any new design are carefully examined by the use of an X-ray machine to be certain of uniformity of structure. The X -ray is also used to check welding work, mill heads, and other castings.

Each Mills, regardless of size, is designed to meet the specific grinding conditions under which it will be used. The speed of the mill type of liner, discharge arrangement, size of feeder, size of bearings, mill diameter and length, and other factors are all considered to take care of the size of feed, tonnage, circulating sand load, selection of balls or rods, and the final size of grind.

All Mills are built with jigs and templates so that any part may be duplicated. A full set of detailed drawings is made for each mill and its parts. This record is kept up to date during the life of the mill. This assures accurate duplication for the replacement of wearing parts during the future years.

As a part of our service our staff includes experienced engineers, trained in the field of metallurgy with special emphasis on grinding work. This knowledge, as well as a background gained from intimate contact with various operating companies throughout the world, provides a sound basis for consultation on your grinding problems. We take pride in manufacturing rod mills and ball millsfor the metallurgical, rock products, cement, process, and chemical industries.

As an additional service we offer our testing laboratories to check your material for grindability. Since all grinding problems are different some basis must be established for recommending the size and type of grinding equipment required. Experience plays a great part in this phase however, to establish more direct relationships it is often essential to conduct individual grindability tests on the specific material involved. To do this we have established certain definite procedures of laboratory grinding work to correlate data obtained on any new specific material for comparison against certain standards. Such standards have been established from conducting similar work on material which is actually being ground in Mills throughout the world. The correlation between the results we obtain in our laboratory against these standards, coupled with the broad experience and our companys background, insures the proper selection and recommendation of the required grinding equipment.

When selecting a grinding mill there are many factors to be taken into consideration. First let us consider just what constitutes a grinding mill. Essentially it is a revolving, cylindrical shaded machine, the internal volume of which is approximately one-half filled with some form of grinding media such as steel balls, rods or non-ferrous pebbles.

Feed may be classified as hard, average or soft. It may be tough, brittle, spongy, or ductile. It may have a high specific gravity or a low specific gravity. The desired product from a mill may range in size from a 4 mesh down to 200 mesh, or into the fine micron sizes. For each of these properties a different mill would be indicated.

The Mill has been designed to carry out specific grinding work requirements with emphasis on economic factors. Consideration has been given to minimizing shut-down time and to provide long, dependable trouble-free operation. Wherever wear takes place renewable parts have been designed to provide maximum life. A Mill, given proper care, will last indefinitely.

Mills have been manufactured in a wide variety of sizes ranging from laboratory units to mills 12 in diameter, with any suitable length. Each of these mills, based on the principles of grinding, provides the most economical grinding apparatus.

For a number of years ball mill grinding was the only step in size reduction between crushing and subsequent treatment. Subsequently smaller rod mills have altered this situation, providing in some instances a more economical means of size reduction in the coarser fractions. The principal field of rod mill usage is the preparation of products in the 4-mesh to 35-mesh range. Under some conditions it may be recommended for grinding to about 48 mesh. Within these limits a rod mill is often superior to and more efficient than a ball mill. It is frequently used for such size reduction followed by ball milling to produce a finished fine grind. It makes a product uniform in size with only a minimum amount of tramp oversize.

The basic principle by which grinding is done is reduction by line contact between rods extending the full length of the mill. Such line contact results in selective grinding carried out on the largest particle sizes. As a result of this selective grinding work the inherent tendency is to make size reduction with the minimum production of extreme fines or slimes.

The small rod mill has been found advantageous for use as a fine crusher on damp or sticky materials. Under wet grinding conditions this feed characteristic has no drawback for rod milling whereas under crushing conditions those characteristics do cause difficulty. This asset is of particular importance in the manufacture of sand, brick, or lime where such material is ground and mixed with just sufficient water to dampen, but not to produce a pulp. The rod mill has been extensively used for the reduction of coke breeze in the 8-mesh to 20-mesh size range containing about 10% moisture to be used for sintering ores.

Grinding by use of nearly spherical shaped grinding media is termed ball milling. Strictly speaking, such media are made of steel or iron. When iron contamination is detrimental, porcelain or natural non-metallic materials are used and are referred to as pebbles. When ore particles are used as grinding media this is known as autogenous grinding.

Other shapes of media such as short cylinders, cubes, cones, or irregular shapes have been used for grinding work but today the nearly true spherical shape is predominant and has been found to provide the most economic form.

In contrast to rod milling the grinding action results from point contact rather than line contact. Such point contacts take place between the balls and the shell liners, and between the individual balls themselves. The material at those points of contact is ground to extremely fine sizes. The present day practice in ball milling is generally to reduce material to 35 mesh or finer. Grinding in a ball mill is not selective as it is in a rod mill and as a result more extreme fines and tramp oversize are produced.

Small Ball mills are generally recommended not only for single stage fine grinding but also have wide application in regrind work. The Small Ball millwith its low pulp level is especially adapted to single stage grinding as evidenced by hundreds of installations throughout the world. There are many applications in specialized industrial work for either continuous or batch grinding.

Wet grinding may be considered as the grinding of material in the presence of water or other liquids in sufficient quantity to produce a fluid pulp (generally 60% to 80% solids). Dry grinding on the other hand is carried out where moisture is restricted to a very limited amount (generally less than 5%). Most materials may be ground by use of either method in either ball mills or rod mills. Selection is determined by the condition of feed to the mill and the requirements of the ground product for subsequent treatment. When grinding dry some provision must be made to permit material to flow through the mill. Mills provide this necessary gradient from the point of feeding to point of discharge and thereby expedites flow.

The fineness to which material must be ground is determined by the individual material and the subsequent treatment of that ground material Where actual physical separation of constituent particles is to be realized grinding must be carried to the fineness where the individual components are separated. Some materials are liberated in coarse sizes whereas others are not liberated until extremely fine sizes are reached.

Occasionally a sufficient amount of valuable particles are liberated in coarser sizes to justify separate treatment at that grind. This treatment is usually followed by regrinding for further liberation. Where chemical treatment is involved, the reaction between a solid and a liquid, or a solid and a gas, will generally proceed more rapidly as the particle sizes are reduced. The point of most rapid and economical change would determine the fineness of grind required.

Laboratory examinations and grinding tests on specific materials should be conducted to determine not only the fineness of grind required, but also to indicate the size of commercial equipment to handle any specific problem.

ball milling - an overview | sciencedirect topics

Ball milling is often used not only for grinding powders but also for oxides or nanocomposite synthesis and/or structure/phase composition optimization [14,41]. Mechanical activation by ball milling is known to increase the material reactivity and uniformity of spatial distribution of elements [63]. Thus, postsynthesis processing of the materials by ball milling can help with the problem of minor admixture forming during cooling under air after high-temperature sintering due to phase instability.

Ball milling technique, using mechanical alloying and mechanical milling approaches were proposed to the word wide in the 8th decade of the last century for preparing a wide spectrum of powder materials and their alloys. In fact, ball milling process is not new and dates back to more than 150 years. It has been used in size comminutions of ore, mineral dressing, preparing talc powders and many other applications. It might be interesting for us to have a look at the history and development of ball milling and the corresponding products. The photo shows the STEM-BF image of a Cu-based alloy nanoparticle prepared by mechanical alloying (After El-Eskandarany, unpublished work, 2014).

Ball milling, a shear-force dominant process where the particle size goes on reducing by impact and attrition mainly consists of metallic balls (generally Zirconia (ZrO2) or steel balls), acting as grinding media and rotating shell to create centrifugal force. In this process, graphite (precursor) was breakdown by randomly striking with grinding media in the rotating shell to create shear and compression force which helps to overcome the weak Vander Waal's interaction between the graphite layers and results in their splintering. Fig. 4A schematic illustrates ball milling process for graphene preparation. Initially, because of large size of graphite, compressive force dominates and as the graphite gets fragmented, shear force cleaves graphite to produce graphene. However, excessive compression force may damage the crystalline properties of graphene and hence needs to be minimized by controlling the milling parameters e.g. milling duration, milling revolution per minute (rpm), ball-to-graphite/powder ratio (B/P), initial graphite weight, ball diameter. High quality graphene can be achieved under low milling speed; though it will increase the processing time which is highly undesirable for large scale production.

Fig. 4. (A) Schematic illustration of graphene preparation via ball milling. SEM images of bulk graphite (B), GSs/E-H (C) GSs/K (D); (E) and (F) are the respective TEM images; (G) Raman spectra of bulk graphite versus GSs exfoliated via wet milling in E-H and K.

Milling of graphite layers can be instigated in two states: (i) dry ball milling (DBM) and (ii) wet ball milling (WBM). WBM process requires surfactant/solvent such as N,N Dimethylformamide (DMF) [22], N-methylpyrrolidone (NMP) [26], deionized (DI) water [27], potassium acetate [28], 2-ethylhexanol (E-H) [29] and kerosene (K) [29] etc. and is comparatively simpler as compared with DBM. Fig. 4BD show the scanning electron microscopy (SEM) images of bulk graphite, graphene sheets (GSs) prepared in E-H (GSs/E-H) and K (GSs/K), respectively; the corresponding transmission electron microscopy (TEM) images and the Raman spectra are shown in Fig. 4EG, respectively [29].

Compared to this, DBM requires several milling agents e.g. sodium chloride (NaCl) [30], Melamine (Na2SO4) [31,32] etc., along with the metal balls to reduce the stress induced in graphite microstructures, and hence require additional purification for exfoliant's removal. Na2SO4 can be easily washed away by hot water [19] while ammonia-borane (NH3BH3), another exfoliant used to weaken the Vander Waal's bonding between graphite layers can be using ethanol [33]. Table 1 list few ball milling processes carried out using various milling agent (in case of DBM) and solvents (WBM) under different milling conditions.

Ball milling of graphite with appropriate stabilizers is another mode of exfoliation in liquid phase.21 Graphite is ground under high sheer rates with millimeter-sized metal balls causing exfoliation to graphene (Fig. 2.5), under wet or dry conditions. For instance, this method can be employed to produce nearly 50g of graphene in the absence of any oxidant.22 Graphite (50g) was ground in the ball mill with oxalic acid (20g) in this method for 20 hours, but, the separation of unexfoliated fraction was not discussed.22 Similarly, solvent-free graphite exfoliations were carried out under dry milling conditions using KOH,23 ammonia borane,24 and so on. The list of graphite exfoliations performed using ball milling is given in Table 2.2. However, the metallic impurities from the machinery used for ball milling are a major disadvantage of this method for certain applications.25

Reactive ball-milling (RBM) technique has been considered as a powerful tool for fabrication of metallic nitrides and hydrides via room temperature ball milling. The flowchart shows the mechanism of gas-solid reaction through RBM that was proposed by El-Eskandarany. In his model, the starting metallic powders are subjected to dramatic shear and impact forces that are generated by the ball-milling media. The powders are, therefore, disintegrated into smaller particles, and very clean or fresh oxygen-free active surfaces of the powders are created. The reactive milling atmosphere (nitrogen or hydrogen gases) was gettered and absorbed completely by the first atomically clean surfaces of the metallic ball-milled powders to react in a same manner as a gas-solid reaction owing to the mechanically induced reactive milling.

Ball milling is a grinding method that grinds nanotubes into extremely fine powders. During the ball milling process, the collision between the tiny rigid balls in a concealed container will generate localized high pressure. Usually, ceramic, flint pebbles and stainless steel are used.25 In order to further improve the quality of dispersion and introduce functional groups onto the nanotube surface, selected chemicals can be included in the container during the process. The factors that affect the quality of dispersion include the milling time, rotational speed, size of balls and balls/ nanotube amount ratio. Under certain processing conditions, the particles can be ground to as small as 100nm. This process has been employed to transform carbon nanotubes into smaller nanoparticles, to generate highly curved or closed shell carbon nanostructures from graphite, to enhance the saturation of lithium composition in SWCNTs, to modify the morphologies of cup-stacked carbon nanotubes and to generate different carbon nanoparticles from graphitic carbon for hydrogen storage application.25 Even though ball milling is easy to operate and suitable for powder polymers or monomers, process-induced damage on the nanotubes can occur.

Ball milling is a way to exfoliate graphite using lateral force, as opposed to the Scotch Tape or sonication that mainly use normal force. Ball mills, like the three roll machine, are a common occurrence in industry, for the production of fine particles. During the ball milling process, there are two factors that contribute to the exfoliation. The main factor contributing is the shear force applied by the balls. Using only shear force, one can produce large graphene flakes. The secondary factor is the collisions that occur during milling. Harsh collisions can break these large flakes and can potentially disrupt the crystal structure resulting in a more amorphous mass. So in order to create good-quality, high-area graphene, the collisions have to be minimized.

The ball-milling process is common in grinding machines as well as in reactors where various functional materials can be created by mechanochemical synthesis. A simple milling process reduces both CO2 generation and energy consumption during materials production. Herein a novel mechanochemical approach 1-3) to produce sophisticated carbon nanomaterials is reported. It is demonstrated that unique carbon nanostructures including carbon nanotubes and carbon onions are synthesized by high-speed ball-milling of steel balls. It is considered that the gas-phase reaction takes place around the surface of steel balls under local high temperatures induced by the collision-friction energy in ball-milling process, which results in phase separated unique carbon nanomaterials.

Conventional ball milling is a traditional powder-processing technique, which is mainly used for reducing particle sizes and for the mixing of different materials. The technique is widely used in mineral, pharmaceutical, and ceramic industries, as well as scientific laboratories. The HEBM technique discussed in this chapter is a new technique developed initially for producing new metastable materials, which cannot be produced using thermal equilibrium processes, and thus is very different from conventional ball milling technique. HEBM was first reported by Benjamin [38] in the 1960s. So far, a large range of new materials has been synthesized using HEBM. For example, oxide-dispersion-strengthened alloys are synthesized using a powerful high-energy ball mill (attritor) because conventional ball mills could not provide sufficient grinding energy [38]. Intensive research in the synthesis of new metastable materials by HEBM was stimulated by the pioneering work in the amorphization of the Ni-Nb alloys conducted by Kock et al. in 1983 [39]. Since then, a wide spectrum of metastable materials has been produced, including nanocrystalline [40], nanocomposite [41], nanoporous phases [42], supersaturated solid solutions [43], and amorphous alloys [44]. These new phase transformations induced by HEBM are generally referred as mechanical alloying (MA). At the same time, it was found that at room temperature, HEBM can activate chemical reactions which are normally only possible at high temperatures [45]. This is called reactive milling or mechano-chemistry. Reactive ball milling has produced a large range of nanosized oxides [46], nitrides [47], hydrides [48], and carbide [49] particles.

The major differences between conventional ball milling and the HEBM are listed in the Table 1. The impact energy of HEBM is typically 1000 times higher than the conventional ball milling energy. The dominant events in the conventional ball milling are particle fracturing and size reductions, which correspond to, actually, only the first stage of the HEBM. A longer milling time is therefore generally required for HEBM. In addition to milling energy, the controls of milling atmosphere and temperature are crucial in order to create the desired structural changes or chemical reactions. This table shows that HEBM can cover most work normally performed by conventional ball milling, however, conventional ball milling equipment cannot be used to conduct any HEBM work.

Different types of high-energy ball mills have been developed, including the Spex vibrating mill, planetary ball mill, high-energy rotating mill, and attritors [50]. In the nanotube synthesis, two types of HEBM mills have been used: a vibrating ball mill and a rotating ball mill. The vibrating-frame grinder (Pulverisette O, Fritsch) is shown in Fig. 1a. This mill uses only one large ball (diameter of 50 mm) and the media of the ball and vial can be stainless steel or ceramic tungsten carbide (WC). The milling chamber, as illustrated in Fig. 1b, is sealed with an O-ring so that the atmosphere can be changed via a valve. The pressure is monitored with an attached gauge during milling.

where Mb is the mass of the milling ball, Vmax the maximum velocity of the vial,/the impact frequency, and Mp the mass of powder. The milling intensity is a very important parameter to MA and reactive ball milling. For example, a full amorphization of a crystalline NiZr alloy can only be achieved with a milling intensity above an intensity threshold of 510 ms2 [52]. The amorphization process during ball milling can be seen from the images of transmission electron microscopy (TEM) in Fig. 2a, which were taken from samples milled for different lengths of time. The TEM images show that the size and number of NiZr crystals decrease with increasing milling time, and a full amorphization is achieved after milling for 165 h. The corresponding diffraction patterns in Fig. 2b confirm this gradual amorphization process. However, when milling below the intensity threshold, a mixture of nanocrystalline and amorphous phases is produced. This intensity threshold depends on milling temperature and alloy composition [52].

Figure 2. (a) Dark-field TEM image of Ni10Zr7 alloy milled for 0.5, 23, 73, and 165 h in the vibrating ball mill with a milling intensity of 940 ms2. (b) Corresponding electron diffraction patterns [52].

Fig. 3 shows a rotating steel mill and a schematic representation of milling action inside the milling chamber. The mill has a rotating horizontal cell loaded with several hardened steel balls. As the cell rotates, the balls drop onto the powder that is being ground. An external magnet is placed close to the cell to increase milling energy [53]. Different milling actions and intensities can be realized by adjusting the cell rotation rate and magnet position.

The atmosphere inside the chamber can be controlled, and adequate gas has to be selected for different milling experiments. For example, during the ball milling of pure Zr powder in the atmosphere of ammonia (NH3), a series of chemical reactions occur between Zr and NH3 [54,55]. The X-ray diffraction (XRD) patterns in Fig. 4 show the following reaction sequence as a function of milling time:

The mechanism of a HEBM process is quite complicated. During the HEBM, material particles are repeatedly flattened, fractured, and welded. Every time two steel balls collide or one ball hits the chamber wall, they trap some particles between their surfaces. Such high-energy impacts severely deform the particles and create atomically fresh, new surfaces, as well as a high density of dislocations and other structural defects [44]. A high defect density induced by HEBM can accelerate the diffusion process [56]. Alternatively, the deformation and fracturing of particles causes continuous size reduction and can lead to reduction in diffusion distances. This can at least reduce the reaction temperatures significantly, even if the reactions do not occur at room temperature [57,58]. Since newly created surfaces are most often very reactive and readily oxidize in air, the HEBM has to be conducted in an inert atmosphere. It is now recognized that the HEBM, along with other non-equilibrium techniques such as rapid quenching, irradiation/ion-implantation, plasma processing, and gas deposition, can produce a series of metastable and nanostructured materials, which are usually difficult to prepare using melting or conventional powder metallurgy methods [59,60]. In the next section, detailed structural and morphological changes of graphite during HEBM will be presented.

Ball milling and ultrasonication were used to reduce the particle size and distribution. During ball milling the weight (grams) ratio of balls-to-clay particles was 100:2.5 and the milling operation was run for 24 hours. The effect of different types of balls on particle size reduction and narrowing particle size distribution was studied. The milled particles were dispersed in xylene to disaggregate the clumps. Again, ultrasonication was done on milled samples in xylene. An investigation on the amplitude (80% and 90%), pulsation rate (5 s on and 5 s off, 8 s on and 4 s off) and time (15 min, 1 h and 4 h) of the ultrasonication process was done with respect to particle size distribution and the optimum conditions in our laboratory were determined. A particle size analyzer was used to characterize the nanoparticles based on the principles of laser diffraction and morphological studies.

ball mill manufacturer | neumann machinery company

Neumann Machinery Company (NMC) is headquartered in West Jordan, Utah, in the USA just 14 miles south of Salt Lake City. The area is steeped in a rich history in the supply of mining and heavy industrial machinery.

The original EIMCO products have been operating in many parts of the world since 1932. NMC has updated designs and added the most state of the art features, automation and techniques to its most recent ball mill designs.