industry jaw crusher design rock hammer iron ore crusher mill with good price

xrf analyzer equipment for sale

Were going to do a quick intro to pXRF and pXRD principles and how they work. Then, were going to focus on pXRF, and work through the products, some of the suggested operating procedures, and then spend a bit of time looking at good references, case studies, and applications.

Were have complete geoscience solution; we have diffraction, which can gives us quantitative minerology. So if were looking at this slide, on the top left we can actually derive the amount of minerals so they can quantify them. We have X-ray fluorescence, which is chemistry. We get very good, almost lab grade results if were doing the right job. And then, we also have the ability to look at structural properties of geo sites as well through microscopy, or optical minerology, or petrology, which is again, the backbone of what we learn at university when were looking at minerology. Its the gold standard in a lot of ways.

Breaking it down to the products. And again, today were just going to focus on the portable products. This is our XRF products. Again, chemistry. We have the new VANTA Series handheld, which Ill explain a little bit in the next section. We have the DELTA, which has been the workforce for a good six or seven years now. Many people are familiar with our DELTA Series handheld. And then, Im just going to mention we have some portable bench-tops, some sort of customized smaller systems, as well as our process, and online, and sorting systems as well. If youd like more information about the other products, feel free to get in contact with us after the webinar.

And the one slide which Ive got for microscopy is that we have a bunch of solutions from stereo microscopes to the polarizing microscopes and the metallurgical microscopes, which are all around optical mineralogy. Again, if you need more information, we can point you to the product managers and the specialists in the microscope business.

With XRF and XRD, as you wouldve read in the webinar intro, this talk is essentially targeting people whove got an existent background in the physics. So, Ill keep it quite simple. But again, if you need more information about how the fundamentals work, we can provide you with that. X-ray fluorescence, we shot an X-ray on the sample, we use a technique called EDS, so its Energy Dispersive XRF, where were basically able to get characteristic X-ray back for each element. We measure them in a spectre, we quantify them, and thats what we use to get a quantitative result for each element. Diffractions collect different. Were basically getting the shinning and x-Ray on a sample, were looking at diffraction of the mineral layers within each compound. Theyre all crystal structure. And we end with a diagnostic fingerprint for each mineral. And then, again, we can quantify that using processing techniques.

Many of you know the periodic table continues to give better coverage and better sensitivity. Weve looked at this many times over the years. And essentially, what were looking at in the grain is elements that we can get down to low PPM levels. So with modern X-Ray tubes and with silicon drift detectors, we can now do a really good job across pretty much the whole periodic table. And especially the light elements. The new systems give us the ability to things like magnesium, aluminum, silicon, to labels that weve not been able to do before.

And if we start to look at the market now, we play work different parts of industry. We call it the Mining Value Chain. We start with geoscience research, with geological surveys, we then move to mineral exploration, where were developing around existing operations. We then move into the grade control area where weve got systems trying to make real-time decisions around materials and destination of materials. From there, were able to use that to form the processing division of the business around geometallurgy and aspects of decision-making on chemistry and minerology. And then, at the very backend of the business, we can also play a role in mine closure, and in the environmental business around looking at solar irradiation and contaminated land. Theres one separate business, which we have a nice sort of segue way into, which is around maintenance. A lot of our tools we use for NDT, and for Alloy, and PMI, and things like oil. And again, if youd like more information on that, which Im not going to cover today, we can point you in the right direction.

To dial it down a little bit, and to focus on XRF in particular and this is where Id like to just quickly talk about our new offering. In September, weve released our fifth generation handheld called VANTA. Its a complete revolution in the industry. Its ten plus years of, basically, building an instrument thats been specifically designed for our market. And when I say that, the core pillars are around ruggedization. So we now have IP67 rating, dust and water proof, we have very high temperature ratings, up to 50 degrees C for geocycle. And one of the cool things that will detect a shadow, the mechanical eye lid that come down and protect the detector. We also revolutionary XRF technology, which is all about better accuracy, better precision, and higher cap rates, which means we can do more work faster, with higher accuracy and higher precision. And in the productivity space, we have a whole bunch of new cool stuff coming around cloud-enabled data processing, we have things like embedded GPS, new software its a revolution in handheld XRF.

The products aside, where weve really established ourselves as, essentially, the industry leaders is We all know that XRF can do a great job, but theres a bunch of things that we need to do. And its very similar to what the lab has to do when they process our samples, its all around best practice. We put out a blog, and we had a week called Geoscience Week where we put out a guide called A Quickstart Guide for Best Practices in Portable XRF.

So, we look at the start. We need to start with designing an orientation survey. A lot of that is around standard operating procedure, chain of custody, QA/QC, all things that as geologists were very comfortable dealing with our normal lab regime. This paper that was published and I was a co-publisher, it was a cornerstone paper, which goes to each one of these procedures, around each part of the procedure. Selecting a sample. Preparation what do we want to look at around sample preparation? Data handling, data custody. And then, what do we actually want to do with the data when were finished.

And the next slide is all about selecting what sample. What are we working with? Are we working with bio-geochemical samples? Are we working with soils? Are we working around a drill rig where were taking precaution, or where we actually want to look at drill quill? So, we have to make a decision about the way were going to analyze that sample, and then move forward with the process.

And this slide encompasses a few of the really key aspects. Probably the main one, in the top right corner, is grainsize. And we know that if we have homogenous good materials, were going to get a good result. But if were analyzing course grain materials, were going to get very erratic and heterogeneous results. Similarly, if were running through bags, were going to get attenuation thats obviously going to affect the calibration, its going to dilute our results. So were able to do that, but we need to make sure sap specific calibration is built up to take care of all of those things. And on the left, its an example of how to actually select the right type of soil to get out a sample. Were looking at a soil horizon here, with different parts of the stratigraphy to leave different types of metal due to things like redox and chemical reactions going on in the ground itself. Were actually able to use portable XRF to tell us what sample has the accumulation of metals, and which sample is going to get us the best results.

As the manufacturer, we do the best job we can to give you guys a robust calibration out of the box. We do have lots of different standards, and lots of different samples, but at the end of the day, you want to make sure that youll qualify an instrument, and youre doing the right thing around looking at the performance of the XRF versus certified reference materials. Theres an example of a company, very well-known with research in Australia, who have very good standards that we can after. And this shows portable XRF versus them. Its iron, in this particular case. And if were doing the right thing, we get the same result. So, its very encouraging.

And this is XRF instrument which you can go and buy off the shelf. Theres some pricing there. This is the packaging. You get a nice little portable XRF standards package you can take out into the field for any sampling regime.

The next step in the process that were really very comfortable and very used to doing, is coming on site, and developing site-specific standards. Were working with site-specific standards because the final refinement, or the final tuning or tweaking call it what you will is actually tailoring the XRF to do the absolute perfect job for the type of rocks that youre working with. And what we can see in the bottom left hand corner here is a set of 45 or 47 samples for a very low range metal. In this particular example, its copper and iron in an IOCG deposit. And we built a calibration, and basically, tweaked the calibration so wed get a one to one rating and a 99% correlation to make sure that youre very confident that the analyzer is doing the right job.

As I mentioned earlier, one of the critical points with portable XRF is around sample presentation. And again, we have a whole lot of solutions and a whole lot of expertise around providing that guidance, and providing recommendations on what sort of tools and equipment we can use in the field. Again, if youd like more information, we can certainly point you into the right direction with some of these companies, whether itd be drilling a hole in a sample, or taking a sample right through lead-based, you know, a ring mill or a jewel crusher to get 95% of your sample passing 75 micron. The more that we get towards that, the better results we can achieve in the field.

And if we just want to spend a few seconds focusing just of field-based sampling solutions, theres some fairly well-known bits of equipment out there which you can go and purchase, including this rock grinder for sample either across a wall or a phase underground, or theres this small hammer mill up on the right hand side, which we can use for crushing things like RC chips or soil thats not quite homogenous enough in the field. And you can take these out in the field, run them off 12 volt system off a car. And you can quite easily obtain lab grade results in the field.

And then, more of the Complete Solution level. We have a company that we work in tandem with around creating and developing a full solution. And thats crushing and grinding. We have a sample press. A sample press enables to create a puck without a consumable, it doesnt require a window, which means that youre getting a lot better XRF performance without having attenuation. They also have systems, which flows in the laboratory. Its a laboratory information management system, which manages the chain of custody, the standards, it merges the real-time QA/QC actually while youre running the sample. So, it gives you confidence that youre getting good results whilst youre actually running the samples.

And a key part of what were dealing with is how do we deliver our data in real-time. And anybody who uses the portable XRF knows that we can generate a lot of data very, very quickly. Weve got spreadsheets of multi-element data arriving all over the place. I quite often see people with laptops where theyve got 20 or 30 spreadsheets altogether on the one page, and it gets quite difficult. But having solutions, like this one Ive got up on the screen, the data can arrive into a real-time web portal, it can be QA/QC validated, it can be managed remotely, and then we can get an output, which is designed to be doing exactly what the client would like to see. Roll out of bed in the morning before they go and see the drill rig, and they can see the data on their iPhone, and say, Oh, look, were drilled through the contact, now we need to stop the drill, and make that decision, save lots of money, and then move the drills to the next site. Its all about real-time decision-making.

And then, once we have all that data, its what do we do with it. And as geologists, we generally pass that into a 3D model, we use that 3D model for a lot of things, we use it for mine design, we use it for vectoring towards mineralization, were targeting where were going to drill next. And we have tools, where we have our portable XRF data arrive into a classification system, as in the right hand corner there. The rocks get classified, and then passed straight into a 3D model. So its all about expediting the chain of custody of the data that usually can take months, even up to half a year to get this data into a model and start working with it.

And then, the one small part Im going to talk about a little bit is about how we take that data, and how do we report that data to the market. And again, its been quite controversial in the past, myself and a few others involved around pXRF technologies spent some time with this and said, Well, lets include some of these sampling techniques, some of the recommended procedures when people want to report the data so they can go to table one, we can get some information, and we can get some recommendations on what we need to do to report it. Again, for those whod like more information, weve got lots of good examples with companies who do this the right way, and what you should be looking at to put out in the market.

One of the very well-known industry initiatives that happened a couple of years ago, up here, in Canada, ran by a very well-known geochemist, where we had a bunch of industry companies who sponsored, and we worked through the quality control and assessment of portable XRF. It was all about bench marking. What can XRF do? How can we develop standard operating procedures on variable media? And how can we recommend the best use? Again, thats a great reference, its about 500 pages of reports and data there. And you can go to the its actually on the Association of Applied Geochemists website and download the report. Its a great reference.

And as part of that work, an editor of Geo Magazine, we put together a thematic set. So, two complete issues of Geo which were completely dedicated to portable XRF. And that was where companies and institutions submitted papers on best practices and what theyve done. So, its a great reference out there for those who are looking for papers and for direction on where to head.

An example in Finland, was put together in a special report, which has a whole chapter on portable XRF. And for this particular example, it was looking at Geo chemistry, and how theyre effectively using portable XRF to do that. And in light of that, and actually many years ago, about 15 years ago this is an example of geological survey of Canada with using a similar technique, theyre using litho-geochemistry, so using the chemistry to tell us what part of the stratigraphy and what rock types are in. And what were looking at here, on this downhole plot is the blue data is ICP thats lab data and the red data is XRF, and were getting very agreeable results between the two datasets. And from there, theyre able to work out the rock type, determine the stratigraphy, and basically, adapt and design their drill program in real-time.

Moving forward, an organization that weve worked with a lot in Australia, kind of the coalface and the cutting edge of pXRF technology is that we know the data is very, very good. And when we look at these plots, we can see extremely good agreement between elements. In geoscience, we use certain elements to tell us certain things. We use arsenic as a very string proxy for gold mineralization, we use things like titanium, zirconium, and chrome. They are mobile to mobile element ratios to tell us what are rock types are. And if take that dotted board, were actually able to use that to start to predict and work out what rock types are, and take the subjectivity and some of the fuzziness out of logging rocks. And what were looking at here, its an advanced algorithm its actually called wavelet tessellation where were using iron through a project that was developed through a group which was a large research initiative in Australia. And we can use iron through a wave of tessellation to, basically, break out the rocks and start to break it down into different scales of features that were seeing, you know, first order versus second order versus third order features, and to help that and assist us in breaking up the rock types, which may not be visually obvious for people to pick out in the field.

Moving from the R&D and the geo survey applications, its the first place that we tested XRF and our businesses, generally around soil sampling. So soil sampling works very, very well if fine-grained samples are able to move about on the surface of the earth. And that geochemistry very, very rapidly. And in this particular example, we managed to cover this area, and basically, build up a real-time geochemical map very rapidly. From there, we could move around, we could decide where were we going to go next, and we can use that as a decision-making tool on how were going to change our sample program on the site. One of the really cool things about having assay data right from the field is that you dont just get one element. In the last example we were just saying copper, but now, in this particular example, which is the same dataset, we can see every element side by side. So we have copper, lead, zinc, and we get to see the way the different metals are moving around in the system, and we can see whats mobile and whats not. We can see contamination overprint. For working in an area around the mine, we can see where theres sulfur and sulphides that have been delivered around roads and things like that.

And if we start to talk about the return on investment, and what we ca actually get out of portable XRF, well, the value proposition, the current example I have up on the screen was one of the users in Australia, and it shows what can be achieved with one month with one instrument. And in this particular example, they were able to go out and do very detailed, very fine geochemical sampling over a known area of mineralization its South Australia, around the Burra Copper deposits, which is one of the biggest copper deposits in the world and delineate exactly where they were going to go and drill next. And again, this is several years ago as the technology was emerging. It got the company into the place that they needed to to make those decisions.

As we go further down the value chain, once we have an anomaly, once we have a target, the first thing were going to do is start drilling it. And some of the early drill procedures we might use XRF. In this particular example, were using auger drilling in West Africa. We can see the samples are being brought into a bench-top system. Weve got a small little XRF added in the hood. The samples are being run in a very good chain of custody with great validation. And then, were using that data to classify the rock types, because in that area we cant actually tell what the geology is. Were in an area of residual surface. In this example, we can actually map out the grainstone built amongst the sediments, and then we know where to go and target, because were looking for orogenic gold. So its a very, very powerful tool for delimitating the stratigraphy through what would usually be very difficult to look at.

And sticking on the gold theme, the next example I have up on the screen gives us an example of what the geochemical signatures and what the common pathfinders are that were going to use for going out and looking for gold. And one of the things that Ill state up front and we have for many years is that portable XRF is not very good for gold, but theres a whole host of elements which we can use to go and look for gold, which we call pathfinders. And in this example, at the top here, we can see one of those elements, with ICP versus the same element with portable XRF. And were getting exactly the same map, which means that were very confident that portable XRF is doing the same job.

A little bit of a gold theme here. And thats because the gold business, to us, has been a very effective place where weve, obviously, put a lot of instruments into. And its also an application, weve developed a lot of tools and techniques. This particular paper which I have now on the screen was an example several years ago. A fellow who put together a program at Plutonic Gold Mine to, basically, define stratigraphy and use it for geometallurgical work, which were going to have a look in a couple of slides on the next page.

He was able to, basically, reconstruct the stratigraphic model around Plutonic. Basically, its a sequence of bath salts where the bath salts flow in the basis, so in-between flows the gold deposits along those surfaces and substrates, which in the top corner, the red circles, were looking at chrome versus gold. So, as we step down the stratigraphy, the gold accumulates on the stratigraphic boundaries. Now, when theyre able to do 3D surfaces of that, where they can actually model that, and then use that as a tool for vectoring and for modeling where they think the next gold occurrence is going to be, or look for extensions of the orebody. He was also able to take that data and domain it out in a deposit thats quite difficult. Its a refractory gold deposit, its got high arsenic, its got free milling gold versus refractory gold. Essentially, as the arsenic grade goes up, the recovery drops. So what they were able to do was blend and change the process and technologies so they could optimize recovery based on the material that was being delivered to the mill. And again, its an excellent example of having a dataset which they didnt have the past to drive better recoveries, and to get better results in the mill.

The other cool things weve added in the last few years is the camera and collimator feature. And what they give you the ability to do is actually use the XRF with a focusing mechanism. So, with using the camera, we can collimate down so we can change the size of the zoom to look at a bit smaller things. We can actually use that microstructural assessment. Were looking at grain particular or phase particular work. We have some gold grains in those particular examples, which would be quite difficult to observe by the eye, but with an XRF and a camera, we can do a great job.

Moving on to grade control now, we have an example here of iron ore in Australia where our neo systems have the ability to take something that amounts to a 90-second test, and do it within 15 seconds. So what weve got here is iron, essentially in 90 seconds versus 15 seconds, and against Silicon. This is an example where a lot of elements perform extremely well. And its hard to believe even for myself that we can deliver such good data in such rapid time, which means that you can put a lot of samples through that you may not have been able before, and you can make decisions much faster than youve ever been able to before.

On the second slide, were looking at aluminum and phosphorus. In looking at the deleterious settlements in iron ores. So the last example I have here, its a very hot topic at the moment, the whole lithium factories business is, obviously, very energized at the moment pardon my pun. And its technique where we can actually use portable XRF and XRD together. Because if were looking for lithium, theres a bunch of very cool elements in the periodic table, one being rubidium. It fractions into lithium within the same sort of ratios that we see in lithium. And the other thing that we need to do is look at the minerology. So, we might have a lithium deposit, but it doesnt necessarily mean we can mine it. The XRD is a fantastic tool. Were looking at what phase is it in, were looking at if its spodumene, or if its petalite.

Its been one of the applications weve had a lot of success with. And for those geologists that have worked particularly in various gold deposits, its the hydrothermal fluids, I mean particularly orogenic and epithermal or high solvation systems. They generally have different elements that come along with them. Arsenic is probably the silver bullet. We get very strong association in some orebodies obviously, not all where we can use arsenic in a ratio to give us a ballpark relatively, not always absolute of the gold grade. We have many examples, and many published examples that show how well that can work.

What is X-ray fluorescence and what is XRF? XRF is X-ray fluorescence; thats what it stands for and its a method to get fast, non-destructive elemental information about the sample that you have in front of the analyzer.

What type of samples or applications would you be using XRF? The most common application is for scrap sorting. A scrap dealer gets more money if he knows that his stuff is all the same thing. So when they go to melt it off, they can make new stuff out of that. So, thats really what we do as we say okay, its this grade of metal or that particular grade of metal. And they can sort it into light piles and sell it for more money, and so thats where the value gets added, by knowing what you have.

What other type of applications is XRF being used for? Theres some other metal applications which are for positive material identification which are in oil refineries. You need to know that the pipes that you install there are what theyre supposed to be, so they dont corrode too fast and leak and create a health hazard. But theres a lot more than just metals it can go on to soils for mining or for environmental, if youre looking at like lead in soil and a number of other things like that. Theres consumer products looking to make sure about lead in toys, its even used in archaeometry to look at what paintings are made of, because its non-destructive you can use it on pretty much anything.

Do you have to be highly trained to understand how to use this equipment? No, all the difficult mathematics and all that stuff goes on kind of behind the scenes, so weve made it pretty straightforward to use. With a quick safety training in most regions of the world you can be up and running in a couple of minutes.

Are there any other alternatives to XRF? XRF has kind of a unique space in that it gives you quick answers out in the field because you can take the portable instruments out to your sample. And there are a bunch of laboratory techniques that can be a lot more precise, but those usually involve bringing the sample back to the lab, they require like a lot of digestion and work and sample preparation in the lab, and they also destroy a little bit of the sample. So they have some limitations. Some people would send things into a lab, youre doing this more on location.

How long does it take to do a sample? That really depends on what kind of answer you want to get. For a lot of the scrap sorting, we can get an answer in a second or two in terms of what type of metal it is. Some of the metals are more challenging, it might take 15-20 seconds. In the mining kind of space, theyre looking for usually some very detailed information and the test can take a minute or two. But its again relatively quick compared to the hours of digestion you might have to do in the lab or when you send it off to a lab out, waiting for them to get to it. If you expedite it and pay the extra fees, cause youve got that much time in transit time alone sending it off to a lab. So the immediacy of XRF is really one of the big selling points for it.

All XRF instruments are designed around two major components: a X-ray source, commonly an X-ray tube and a detector. Primary X-rays are generated by the source and directed at the sample surface sometimes passing through a filter to modify the X-ray beam.

When the beam hits the atoms in the sample, they react by generating secondary X-rays that are collected and processed by a detector. Now, lets look at what happens to the atoms in the sample during the analysis. A stable atom is made out of a nucleus and electrons orbiting it. The electrons are arranged in energy levels or shells, and different energy levels can hold different numbers of electrons.

When the high energy primary X-ray collides with an atom, it disturbs its equilibrium. An electron is ejected from a low-energy level and a vacancy is created, making the atom instable. To restore stability, an electron from a higher energy level falls into this vacancy. The excess energy released as the electron moves between the two levels is emitted in the form of a secondary X-ray. The energy of the emitted X-ray is characteristic of the element.

This means that XRF provides qualitative information about the sample measured. However, XRF is also a quantitative technique. The X-rays emitted by the atoms in the sample are collected by a detector and processed in the analyzer to generate a spectrum, showing the X-rays intensity peaks versus their energy. As we have seen, the peak energy identifies the element. Its peak area or intensity gives an indication of its amount in the sample.

The analyzer then uses this information to calculate a samples elemental composition. The whole process from pressing the Start button or trigger, to getting the analysis results can be as quick as two seconds, or it can take several minutes.

Compared to other analytical techniques, XRF has many advantages. Its fast, it measures a wide range of elements and concentrations in many different types of materials, its non-destructive and requires no or very little sample preparation and its very low-cost compared to other techniques. Thats why so many people around the world are using XRF on a daily basis to analyze materials. If you want to find out more about our range of XRF analyzers, please visit our website.

Gold, silver, platinum and their alloys, the gold XRF analyzer can measure them all. The gold analyzer quickly and accurately determines the karatage of gold items, the purity of silver items and any other metals that are in the piece. The gold analyzer was designed with the jewelry industry in mind. Its small footprint wont take up valuable counter space and it can test any piece of jewelry in seconds.

Testing couldnt be easier. Just place, close and tap. The gold XRF analyzer is safe for any user. It can only test samples when the lid is shut, and the flashing light on the top lets you know when the test is actually taking place. Compact, accurate, fast.

Gold XRF testing is completely nondestructive. The sample is not affected or harmed in any way. The gold analyzers viewing window and well-lit chamber allows both operator and customer to see the sample as it is being analyzed.

Karat Mode or the more comprehensive Chemistry Analysis Mode can be selected. The gold analyzer uses X-ray fluorescence, a nondestructive and fast analytical method to test samples. Its easy to use and adapts to nearly any sample size or shape. An integrated camera allows the gold analyzer to focus on and get results from individual components. This is useful when testing pieces that include gemstones.

The gold XRF analyzer offers the convenience of portability as well. An optional battery pack allows testing on the go. The gold analyzer weight only 22 pounds, about 10kg and combined with its custom carrying case can go anywhere you need it to.

hammer crusher | industry hammer mills - jxsc machine

Capacity 1-100 TPH Feeding Size350 mm ApplicationHammer crusher can crush medium hardness and brittle materials, such as limestone, slag, coke, coal, etc. Our hammer crushers are widely used in mining, cement, coal, metallurgy, building materials, highway, combustion, and other industries. Our Services

What is a hammer millA hammer mill is a rock crusher used in various industries to reduce the material size, such as limestone, coal, slags, gypsum, glass. It uses of high-speed rotary hammer to impact the ore, the finished product size is adjustable by controlling the grate openings, rotor speed, hammer capacity, etc. Hammer mill, same as hammer crusher, hammer breaker, can crush the 600-1800mm materials to below 25 or 25 mm. Sometimes, the hammer mill crusher is named by the application fields, such as coal crusher, coke crusher, limestone hammer crusher, brick crusher, cement hammer crusher, etc. Our hammer crusher typessingle rotor and double rotor hammer crusher; directional and reversible hammer crusher; vertical shaft, ring hammer crusher, swing hammer crusher; fixed and mobile hammer crusher. hammers materialchromium alloy (containing 20% 27% chromium) OurpriceHammer crusher price is varied by the capacity and base material. JXSC tailor-made the best configuration for different working requirements, longer service time, less maintenance. Contact us to get the best stone hammer crusher machine price. Advantages of hammer crusher machineEasy adjustment of product size; high grinding capability; easy maintenance, a quick exchange of wear parts; stable operation.

Hammer Crusher Partscrushing chamber, rotor shaft, frame, impact hammer, grate bars, motor, flywheel, grate, pallets and lining, dust seal, overload protection device. Hammer Crusher Working principleMaterial are fed into the hammer crusher, that is subject to rotation, high-speed impact and collision are broken. Qualified crushed ore is discharged through the grate, the larger size materials continue to be crushed and shattered until they reached the required size. Hammer Crusher ManufacturerJXSC manufactures various industrial hammer mills, hammer crushers and laboratory use small hammer mills to accomplish your size reduction needs. Our rugged hammer mills employ a rain of continual, high-speed hammer blows to impact crush, grind or shred of a diverse range of materials. Other rock crusher machines like roll crusher, impact crusher, jaw crusher, cone crusher, etc.Common Faults Solutions Hammer crusher in cement plantImpact hammer crusher (cement crusher) combines the advantages of ring hammer crusher, impact crusher, optimizes the grinding chamber, obtains a better fine crushing effect. Coal crusher hammervaried in different capacity requirements, the coal crusher hammer type generally have small capacity hammer crusher (5-55m/h) and the heavy hammer crusher (100-3200t/h).

rock crushers

The size requirement of the primary rock crusher is a function of grizzly openings, ore chute configuration, required throughput, ore moisture, and other factors. Usually, primary crushers are sized by the ability to accept the largest expected ore fragment. Jaw crushers are usually preferred as primary crushers in small installations due to the inherent mechanical simplicity and ease of operation of these machines. Additionally, jaw crushers wearing parts are relatively uncomplicated castings and tend to cost less per unit weight of metal than more complicated gyratory crusher castings. The primary crusher must be designed so that adequate surge capacity is present beneath the crusher. An ore stockpile after primary crushing is desirable but is not always possible to include in a compact design.

Many times the single heaviest equipment item in the entire plant is the primary crusher mainframe. The ability to transport the crusher main frame sometimes limits crusher size, particularly in remote locations having limited accessibility.

In a smaller installation, the crushing plant should be designed with the minimum number of required equipment items. Usually, a crushing plant that can process 1000s of metric tons per operating day will consist of a single primary crusher, a single screen, a single secondary cone crusher, and associated conveyor belts. The discharge from both primary and secondary crushers is directed to the screen. Screen oversize serves as feed to the secondary crusher while screen undersize is the finished product. For throughputs of 500 to 1,000 metric tons per operating day (usually 2 shifts), a closed circuit tertiary cone crusher is usually added to the crushing circuit outlined above. This approach, with the addition of a duplicate screen associated with the tertiary cone crusher, has proven to be effective even on ores having relatively high moisture contents. Provided screen decks are correctly selected, the moist fine material in the incoming ore tends to be removed in the screening stages and therefore does not enter into subsequent crushing units.

All crusher cavities and major ore transfer points should be equipped with a jib-type crane or hydraulic rock tongs to facilitate the removal of chokes. In addition, secondary crushers must be protected from tramp iron by suspended magnets or magnetic head pulleys. The location of these magnets should be such that recycling of magnetic material back into the system is not possible.

Crushing plants for the tonnages indicated may be considered to be standardized. It is not prudent to spend money researching crusher abrasion indices or determining operating kilowatt consumptions for the required particle size reduction in a proposed small crushing plant. Crushing installations usually are operated to produce the required mill tonnage at a specified size distribution under conditions of varying ore hardness by the variation of the number of operating hours per day. It is normal practice to generously size a small crushing plant so that the daily design crushing tonnage can be produced in one, or at most two, operating shifts per working day.

grinding cylpebs

Our automatic production line for the grinding cylpebs is the unique. With stable quality, high production efficiency, high hardness, wear-resistant, the volumetric hardness of the grinding cylpebs is between 60-63HRC,the breakage is less than 0.5%. The organization of the grinding cylpebs is compact, the hardness is constant from the inner to the surface. Now has extensively used in the cement industry, the wear rate is about 30g-60g per Ton cement.

Grinding Cylpebs are made from low-alloy chilled cast iron. The molten metal leaves the furnace at approximately 1500 C and is transferred to a continuous casting machine where the selected size Cylpebs are created; by changing the moulds the full range of cylindrical media can be manufactured via one simple process. The Cylpebs are demoulded while still red hot and placed in a cooling section for several hours to relieve internal stress. Solidification takes place in seconds and is formed from the external surface inward to the centre of the media. It has been claimed that this manufacturing process contributes to the cost effectiveness of the media, by being more efficient and requiring less energy than the conventional forging method.

Because of their cylindrical geometry, Cylpebs have greater surface area and higher bulk density compared with balls of similar mass and size. Cylpebs of equal diameter and length have 14.5% greater surface area than balls of the same mass, and 9% higher bulk density than steel balls, or 12% higher than cast balls. As a result, for a given charge volume, about 25% more grinding media surface area is available for size reduction when charged with Cylpebs, but the mill would also draw more power.

rock crusher history

History tells us,it was in 1830, the firstUS patent was issued on a rock crushing machine. It covered a device which, in a crude way, incorporated the drop hammer principle later used in the famous stamp mill, whose history is so intimately linked with that of the golden age of mining. In 1840,another patent was issued, which comprised a wooden box containing a cylindrical drum apparently of wood also on which a number of iron knobs, or hammers, were fastened; the expectation was that this drum, when revolved at about 350 RPM, would shatter the rock fed into the top of the box. This device, although it was conceived as an impact crusher and thus would rate as a forerunner of the hammermill, bore a somewhat closer resemblance to the single sledging-roll crusher. There is no evidence that either of these early inventors carried their work through to fruition. Eli Whitney Blake invented the first successful mechanical rock breaker, the Blake jaw crusher patented in 1858. Blake adopted a mechanical principle familiar to all students of mechanics, the powerful toggle linkage. That his idea was good is attested to by the fact that the Blake type jaw crusher is today the standard by which all jaw crushers are judged, and the leading machine of the class for heavy duty primary crushing service.

The gyratory principle was the basis of several rudimentary designs, patented between 1860 and 1878, noneof which embodied practical mechanical details at least, not in the light of our present-day knowledge of the art. Then, in 1881, Philetus W. Gates was granted a patent on a machine which included in its design all of the essential features of the modern gyratory crusher. The first sale on record antedates the patent by several months, a No. 2 crusher, sold to the Buffalo Cement Co. in 1880. That was the first of several thousand gyratory crushers which carried the name of Gates to the far corners of the earth. An interesting sidelight of these early days occurred in 1883 when a contest was staged between a Blake jaw crusher and a Gates gyratory crusher. Each machine was required to crush 9 cubic yard of stone, the feed-size anddischarge settings being similar. The Gates crusher finished its quota in 21 minutes, the Blake crusher in 65 minutes, which must have been a sad disappointment to the proponent of the Blake machine, who happened to be the challenger.

For some years after these pioneer machines were developed, requirements, viewed in the light of present practice, were very simple. Mining and quarrying, whether underground or open-pit, was done by hand; tonnages generally were small, and product specifications simple and liberal. In the milling of precious metal ores, stamp mills were popular as the final reduction machine. These were generally fed with an ore size that could be produced handily by one break through the small gyratory and jaw crushers which served as primary breakers. Even in large underground mining operations there was no demand for large crushers; increased tonnage requirements were met by duplicating the small units. For example, in 1915, at the huge Homestake operation, there were no less than 20 Gates small gyratory crushers sizes No. 5 and 6 to prepare the ore for the batteries of >2500 stamp mills.

Most commercial crushed stone plants were small, and demand for small product sizes practically non-existent. Many plants limited output to two or three products. Generally the top size was about 2.5 to 3 ring-size; an intermediate size of about 1.5 or thereabouts, might be made, and the dust, or screenings, removed through openings of about 0.25. In ballast plants the job was even more simple, one split and an oversize re-crush being all that was needed.

Many small process plants consisted of one crusher, either jaw or gyratory rock crushers, one elevator and one screen. Recrushing, if done, was taken care of by the same machine handling the primary break. The single crusher, when of the gyratory type, might be any size from the No. 2 (6 opening) to the No. 6 with 12-in. opening.

When demand grew beyond the capabilities of one crusher, it was generally a simple matter to add a second machine to take care of the recrushing or secondary crushing work. A popular combination, for example, consisted of a No. 6 primary and a No. 4 secondary, or possibly a 20- x 10-in., or 24- x 12-in. primary jaw, followed by one of the small gyratories. When the business outgrew the capacity of this sort of plant, it was not unusual to double up, either in the same building, or by erecting an entirely separate plant adjacent to the original one. Crusher manufacturers were not standing still during these early years. In the gyratory line, for example, the No. 2 was the first popular size, and larger machines were developed from time to time up to the No. 6, then the No. 7.5

The steam shovel began to change the entire picture of open-pit working. With the steam shovel came the really huge No. 8 crusher, with its 18 receiving opening. Up to this time the jaw crusher had kept pace with the gyratory, both from the standpoint of receiving opening and capacity, but now the gyratory stepped into the leading position, which it held for some 15 years. Once the ice was broken, larger and larger sizes of the gyratory type of crusher were developed rapidly, relegating the once huge No. 8 machine to the status of a secondary crusher. This turn toward really large primary crushers started just a few years before the turn of the century, and in 1910 crushers with 48 receiving openings were being built.Along about this time the jaw crusher suddenly came back to life and stepped out in front with a great contribution to the line of mammoth-size primary crushers: the 84 x 60 machine built by the now Joy Mining Machinery for a trap rock quarry in eastern Pennsylvania. This big crusher was followed by a No. 10 (24 opening) gyratory crusher for the secondary break. Interest created by this installation reawakened the industry to the possibilities of the jaw crusher as a primary breaker, and lines were brought up-to-date to parallel the already developed gyratory lines.

Although his machines never came into general use in the industry, Thomas A. Edison ranks as a pioneer in the development of the large primary breaker and credited with the announcement of a very interesting and constructive bit of reasoning, which was the basis of his development. Concerned at the time with the development of a deposit of lean magnetic iron ore where he was using a number of the small jaw crushers then available for his initial reduction. Realizing that to concentrate this ore at a cost to permit marketing it competitively meant cutting every possible corner, he studied the problem of mining and crushing the ore as one of the steps susceptible of improvement.

In approaching the problem, Edison reasoned that the recoverable energy in a pound of coal was approximately equal to the available energy in one pound of 50% dynamite; but the cost per pound of the dynamite was about 100 times that of the coal. Furthermore, a large part of the dynamite used in his mining operation was consumed in secondary breaking to reduce the ore to sizes that the small primary crushers would handle. The obvious conclusion was that it would be much cheaper to break the large pieces of ore by mechanical rather than by explosive energy.

With that thesis as a starting point, he set out to develop a large primary breaker, a development which culminated several years later in the huge and spectacular 8 x 7 Edison rolls. A description of the action of this machine will be found in a later section of this series. During the early years of the present century these giant machines created considerable interest, and several were installed in this country. However, they never became popular, and interest swung back to the more versatile gyratory and jaw types. Edison rolls were also developed in smaller sizes for use as secondary and reduction crushers. In his own cement plant Edison used four sets of rolls operating in series to reduce the quarry-run rock to a size suitable for grinding.

iron ore crusher price, crushing machine for iron ore beneficiation

Iron ore beneficiation begins with the milling of extracted ore in preparation for further operations to recoveriron values. Milling operations are designed to produce uniform size particles by crushing, grinding,and wet or dry classification. The capital investment and operation costs of milling equipment are high.

Crushing is a multistage process and may use dry iron ore feed. Typically, primary crushing andscreening take place at the mine site. Primary crushing is accomplished by using jaw crusher or gyratorycrushers. Primary crushing yields chunks of ore ranging in size from 6 to 10 inches. Oversize material is passed through additional secondary crushers and classifiers to achieve the desired particlesize.

In iron ore beneficiation operation, the raw iron ore materials will be first reduced to small particle size. It may require crushing the material tomaximize the production of minus 2mm. According to SBMs experience in crushing technology, we recommended the installation of acone crusher to reduce the minus 100mm pebblesand a VSI crusher machine to fine crush the cone crusherproduct.

The iron ore crushers with low price are also used in the industrial minerals, mining, recycling and general quarrying industries. A widerange of materials are processed through SBM iron crushers worldwide. SBM experts can customize crushing solution in iron ore beneficiation according to your requirements. Here are some popular iron ore crusher machine types. Please contact us for more information.

According to different final products applications, varioustypes of crusher equipment are required, such as jaw crusher for primary crushing, impact crusher and hammer crusher for secondary crushing, cone crusher for secondary and tertiary crushing. Iron ore crusher prices are different according to crusher types and production capacities.

The VSI crusher for iron ore beneficiation uses a unique rock-on-rockcrushing action whereby the feed materialgrinds and impacts against itself, minimizingwear costs and maintenance down-time. Thisis especially important in applications such asiron ore processing where the feed material istypically hard and abrasive and wear costs arepotentially very high.

Jaw Crusher Jaw crusher is available with stationary, mobile and portable applications. The jaw crushers combine a high reduction ratio and increased capacity with any feed materials: from extra hard rock to recycled materials. This is achieved through several unique features such as higher crushing speed, optimized kinematics, a longer stroke and easy adjustment.

Impact Crusher Impact crushers are based upon several decades of experience with the impact method. We offer a complete range of impact crushers for stationary, semi-mobile fully mobile applications in both primary and secondary crushing.

Cone Crusher Cone crusher is a stationary crusher. These crushers are hydraulic pressure crushers designed to crush a high ratio for high productivity. Cone crushers are ideal for secondary and fine crushing.

300*500 hammer mill and stlb20 centrifugal machine best stone limestone primary stationary crusher line

Dewo machinery can provides complete set of crushing and screening line, including Hydraulic Cone Crusher, Jaw Crusher, Impact Crusher, Vertical Shaft Impact Crusher (Sand Making Machine), fixed and movable rock crushing line, but also provides turnkey project for cement production line, ore beneficiation production line and drying production line. Dewo Machinery can provide high quality products, as well as customized optimized technical proposal and one station after- sales service.

Gravity gold panning knelson centrifugal concentrator STLB20 STLB30 STLB60 price for gold recovery. centrifugal concentrator stlb20(gold centrifugal concentrator) is a family of Mineral Processing Products specifically designed to recover free gold, which is, the gold that does not require gold cyanidation for recovery.The Centrifugal Separator is a type of gravity concentration apparatus.

Rock Hammer Crusher, Mining Machine, Crusher manufacturer / supplier in China, offering Rock Hammer Mill Crusher for Ore Mill (300*500), Russia 400-500tph Alluvial Gold Ore Washing Trommel Screen Gold Centrifugal Concentrator, Gold Mineral Mining Processing Equipment and so on.

Knelson centrifugal concentrator is a centrifugal mineral processing equipment, it has features of high recovery rate, easy operation, etc. It is mainly used for recycle heavy materials in mineral particles, especially good for placer gold mining. Deya Machinery produces automatic discharging and semi-automatic discharging concentrator.

Sand making machine,hammer mill is lately developmental new kind of crusher equipment. This kind of machine is designed for small scale gold processing plant, especially adapt to free gold recovery. Assembled with Centrifugal Concentrator or jig can establish a processing plant, and it is very effective to recovery free gold.

hammer crusher - eastman rock crusher

Hammer crusher is a kind of rock crusher equipment which can crush materials with compressive strength no more than 150MPa.ApplicationsMining, refractory material, cement, sand & gravel, concrete sand, dry mortar, mechanical sand, and so on operations.MaterialsCement, coal, white subdivision, gypsum, alum, brick, tile, limestone and other soft-medium hardness materials.

We not only can provide you with various types of rock crusher, but also can design reasonable crushing process for you free. Contact us to get the high configuration of equipment with competitive price now!

jaw crusher - eastman rock crusher

Jaw crusher is a compression style rock crusher, useful in crushing the medium-hard to very hard material into a smaller particle size at primary crushing stage in the crushing circuit.Applicationsmining, quarry, construction waste recycling, aggregate making, etc.MaterialsLimestone, cobblestone, cobblestone, quartz, basalt, iron ore, granite, shale, sandstone, gypsum, and a variety of ores.

Eastman provides you with complete rock crushers and full list of components, original jaw crusher parts, form and function are a perfect fit.If your equipment breaks down, the productivity of the whole factory will be threatened. Critical wear parts are shipped with the goods to ensure they are available when you need them and to reduce maintenance time.Wear parts: