jaw and cone crushers

rock crushers | aggregate processing equipment | lippman-milwaukee

Lippmann offers a full line of Crushing, Screening, Stacking, and Specialty equipment used for the aggregate, mining, and recycling industries. Discover your perfect stationary, portable, and track equipment for your specific processing application.

mobile jaw crushers | kleemann

The crushing plants of the MOBICAT series are used for the precrushing of almost all natural rock and in recycling. However, the output of the MOBICAT crushing plants is determined not only by the jaw crusher alone - in fact, the optimal interaction of all components plays a decisive role. The focus is increasingly on cost and environmental awareness, availability of the plants, versatility, and quality of the final product.

aggregate washing equipment & screens | portable jaw crusher

At AMI we carry or can locate most brands of used aggregate equipment. If you are looking for a specific piece of used aggregate equipment that we do not currently have in inventory, please contact us and we will gladly assist you in locating the specific item you need.

AMI is a full service aggregate company that can get you the bare equipment, support structures, portable plants, skid mounted plants or complete turnkey systems you need. Please view our past projects and feel free to contact us.

As one of the Astec companies, Telsmith designs, manufactures and markets and services a full line of processing equipment including jaw crushers, cone crushers, impact crushers, screens, and feeders. Brand names such as Iron Giant, Gyrasphere and Vibro-King have gained worldwide recognition for quality and performance.

Hazemag has grown to become a leader of impactor design and control technology. They are very much a part of the North American aggregate and mineral processing scene, serving the cement, aggregate and mineral processing industries. Hazemag impactors are designed with function and simplicity in mind.

Terex Canica has been a leader in the crushing industry since introducing its first Vertical Shaft Impactor. The Terex Canica VSI features gradation control, high product yield with low horsepower per ton, a non-plugging crushing chamber and simple maintenance.

In 2000, the name Thor Steel Welding Ltd. was officially changed to Thor Global Enterprises Ltd. Thor Global continues to lead the competition in terms of continued innovation, strength and simplicity, advanced technology, more standard features than any other manufacturer and the most telescopic experience. Thor has provided hundreds of telescopic machines in the most demanding environments worldwide (North America, South America, Europe, Africa, Australia and the Middle East).

Allied Construction Products, LLC is a leader in innovative construction product technology. Allied designs, manufacturers and distributes these innovative specialty products primarily for the construction and mining industries and for other industries/applications where its products are readily adaptable.

Anaconda Equipment International designs, manufactures and exports an extensive range of mobile screening and mobile stockpiling equipment for use in the mining, quarrying and material recycling industries. Our ranges of tracked and wheeled mounted products are robust, user friendly and easy to move on and off site.

jaw crusher vs cone crusher | advantages and disadvantages

Jaw crushers and cone crushers both are a classic laminated crusher. Also is the most mainstream crusher type. Jaw crusher is usually used as a primary crusher and second-class crusher. Cone crusher is usually used as secondary crusher or three-stage crusher machine. Jaw crusher and cone crusher are usually arranged on the stone crusher plant in two stages.

Jaw crusher breaks the rock to 10 ~ 30 cm size. Cone crushing machine further broke the stone to below 10 cm. Large cone crushers (gyratory crushers) also can as head crushers. Fine jaw crusher also can as a two-stage crusher, crushing stone to cm grade particle size range.

Cone rock crusher and Jaw stone crusher are a laminated crushing principle. Which is commonly known as the impact crushing principle The nature of crushing doesnt change too much, although the actuator of crushing use of different structure. The cone crusher adopts the extrusion process between the grinding wall and the crushing wall. Jaw crusher adopts the extrusion process between the moving jaw plate and the static jaw plate.

Cone crusher and jaw crusher are widely used, but the applicability of the two types of crusher is different. Jaw crusher has the most extensive adaptability and can meet the crushing requirements of almost any kind of materials. Cone crusher is also very wide applicability, but the Metso cone crusher price is high. Low corrosive materials can choose a low-cost impact crusher. Therefore, the applicability of metsos cone crusher has been reduced in economic consideration.

Cone crushing main advantages: High productivity, less power consumption, work more stable, small vibration crushing ratio, product granularity is more uniform, any side can give ore, and can be crowded to ore.

Jaw crusher main advantages: simple structure, low manufacturing cost, convenient maintenance, reliable work, small machine height, easy to configuration, high viscosity for the water ore is not easy to block.

Cone crushing equipment main disadvantages: Complex structure, equipment high costs, height. And need a higher workshop, machine heavy, inconvenient to transport, not suitable for crushing sticky ore, operation and maintenance more complex.

Fine jaw crusher is more used as a secondary crusher machine. It can crush the materials below 200mm to cm level. two jaw crushers can be equipped with the complete crushing production line. The single machine capacity of fine jaw breaking is low, and the breaking capacity of less than 100 tph can only be obtained by means of parallel connection of two machines.

Cone crusher as second-level crushing equipment, single machine crushing capacity of several hundred tons per hour. It occupies the absolute advantage in production capacity. Therefore, the fine jaw crusher can only be used in the secondary crushing station with small capacity. The cone crusher can be used in the secondary crushing station with a large capacity.

The matching of jaw crusher and cone crusher is based on the crushing segmentation. It is necessary to consider whether the particle size of jaw crusher can enter the cone crusher to form secondary crushing. For example, Compound Cone crusher configured in the back process of jaw crusher. The jaw crusher equipment broken too large discharge will plug the cone crusher feed mouth. Resulting crusher plant can not run smoothly.

For the matching of jaw crusher and cone crusher. It is necessary to compare the particle size range of the two materials. And adopt to the best matching range can obtain the most efficient production running state.

Jiangxi Shicheng stone crusher manufacturer is a new and high-tech factory specialized in R&D and manufacturing crushing lines, beneficial equipment,sand-making machinery and grinding plants. Read More

crushers - mccloskey international

Robust, reliable and ready to handle all your requirements. Whether its aggregates, mining, construction & demolition, recycling or road building our McCloskey jaw, cone & impact crushers are ready for any job.

jaw, cone, and impact crusher plants | elrus aggregate equipment

ELRUS manufactures heavy-duty jaw crushers that have been stress relieved and machined for a close fit with other components.OurPrimary Jaw Plant is an excellent choice for the producer who requires quick setup and mobility with a medium size jaw plant.

gyratory crusher - an overview | sciencedirect topics

Gyratory crushers were invented by Charles Brown in 1877 and developed by Gates around 1881 and were referred to as a Gates crusher [1]. The smaller form is described as a cone crusher. The larger crushers are normally known as primary crushers as they are designed to receive run-on-mine (ROM) rocks directly from the mines. The gyratory crushers crush to reduce the size by a maximum of about one-tenth its size. Usually, metallurgical operations require greater size reduction; hence, the products from the primary crushers are conveyed to secondary or cone crushers where further reduction in size takes place. Here, the maximum reduction ratio is about 8:1. In some cases, installation of a tertiary crusher is required where the maximum reduction is about 10:1. The secondary crushers are also designed on the principle of gyratory crushing, but the construction details vary.

Similar to jaw crushers, the mechanism of size reduction in gyratory crushers is primarily by the compressive action of two pieces of steel against the rock. As the distance between the two plates decreases continuous size reduction takes place. Gyratory crushers tolerate a variety of shapes of feed particles, including slabby rock, which are not readily accepted in jaw crushers because of the shape of the feed opening.

The gyratory crusher shown in Figure 2.6 employs a crushing head, in the form of a truncated cone, mounted on a shaft, the upper end of which is held in a flexible bearing, whilst the lower end is driven eccentrically so as to describe a circle. The crushing action takes place round the whole of the cone and, since the maximum movement is at the bottom, the characteristics of the machine are similar to those of the Stag crusher. As the crusher is continuous in action, the fluctuations in the stresses are smaller than in jaw crushers and the power consumption is lower. This unit has a large capacity per unit area of grinding surface, particularly if it is used to produce a small size reduction. It does not, however, take such a large size of feed as a jaw crusher, although it gives a rather finer and more uniform product. Because the capital cost is high, the crusher is suitable only where large quantities of material are to be handled.

However, the gyratory crusher is sensitive to jamming if it is fed with a sticky or moist product loaded with fines. This inconvenience is less sensitive with a single-effect jaw crusher because mutual sliding of grinding surfaces promotes the release of a product that adheres to surfaces.

The profile of active surfaces could be curved and studied as a function of the product in a way to allow for work performed at a constant volume and, as a result, a higher reduction ratio that could reach 20. Inversely, at a given reduction ratio, effective streamlining could increase the capacity by 30%.

Maintenance of the wear components in both gyratory and cone crushers is one of the major operating costs. Wear monitoring is possible using a Faro Arm (Figure 6.10), which is a portable coordinate measurement machine. Ultrasonic profiling is also used. A more advanced system using a laser scanner tool to profile the mantle and concave produces a 3D image of the crushing chamber (Erikson, 2014). Some of the benefits of the liner profiling systems include: improved prediction of mantle and concave liner replacement; identifying asymmetric and high wear areas; measurement of open and closed side settings; and quantifying wear life with competing liner alloys.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100mm. They are classified as jaw, gyratory, and cone crushers based on compression, cutter mill based on shear, and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake. A Fritsch jaw crusher with maximal feed size 95mm, final fineness (depends on gap setting) 0.315mm, and maximal continuous throughput 250Kg/h is shown in Fig. 2.8.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing hard metal scrap for different hard metal recycling processes. Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor. Crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough to pass through the openings of the grating or screen. The size of the product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure, forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions. A design for a hammer crusher (Fig. 2.9) essentially allows a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, the circulation of suspended matter in the gas between A and B zones is established and the high pressure of air in the discharging unit of crusher is reduced.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100 mm in size. They are classified as jaw, gyratory and cone crushers based on compression, cutter mill based on shear and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing of hard metal scrap for different hard metal recycling processes.

Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor and crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough pass through the openings of the grating or screen. The size of product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around of the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions.

A design for a hammer crusher (Figure 2.6) allows essentially a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, circulation of suspended matter in the gas between A- and B-zones is established and high pressure of air in the discharging unit of crusher is reduced.

Jaw crushers are mainly used as primary crushers to produce material that can be transported by belt conveyors to the next crushing stages. The crushing process takes place between a fixed jaw and a moving jaw. The moving jaw dies are mounted on a pitman that has a reciprocating motion. The jaw dies must be replaced regularly due to wear. Figure 8.1 shows two basic types of jaw crushers: single toggle and double toggle. In the single toggle jaw crusher, an eccentric shaft is installed on the top of the crusher. Shaft rotation causes, along with the toggle plate, a compressive action of the moving jaw. A double toggle crusher has, basically, two shafts and two toggle plates. The first shaft is a pivoting shaft on the top of the crusher, while the other is an eccentric shaft that drives both toggle plates. The moving jaw has a pure reciprocating motion toward the fixed jaw. The crushing force is doubled compared to single toggle crushers and it can crush very hard ores. The jaw crusher is reliable and robust and therefore quite popular in primary crushing plants. The capacity of jaw crushers is limited, so they are typically used for small or medium projects up to approximately 1600t/h. Vibrating screens are often placed ahead of the jaw crushers to remove undersize material, or scalp the feed, and thereby increase the capacity of the primary crushing operation.

Both cone and gyratory crushers, as shown in Figure 8.2, have an oscillating shaft. The material is crushed in a crushing cavity, between an external fixed element (bowl liner) and an internal moving element (mantle) mounted on the oscillating shaft assembly. An eccentric shaft rotated by a gear and pinion produces the oscillating movement of the main shaft. The eccentricity causes the cone head to oscillate between the open side setting (o.s.s.) and closed side setting (c.s.s.). In addition to c.s.s., eccentricity is one of the major factors that determine the capacity of gyratory and cone crushers. The fragmentation of the material results from the continuous compression that takes place between the mantle and bowl liners. An additional crushing effect occurs between the compressed particles, resulting in less wear of the liners. This is also called interparticle crushing. The gyratory crushers are equipped with a hydraulic setting adjustment system, which adjusts c.s.s. and thus affects product size distribution. Depending on cone type, the c.s.s. setting can be adjusted in two ways. The first way is by rotating the bowl against the threads so that the vertical position of the outer wear part (concave) is changed. One advantage of this adjustment type is that the liners wear more evenly. Another principle of setting adjustment is by lifting/lowering the main shaft. An advantage of this is that adjustment can be done continuously under load. To optimize operating costs and improve the product shape, as a rule of thumb, it is recommended that cones always be choke-fed, meaning that the cavity should be as full of rock material as possible. This can be easily achieved by using a stockpile or a silo to regulate the inevitable fluctuation of feed material flow. Level monitoring devices that detect the maximum and minimum levels of the material are used to start and stop the feed of material to the crusher as needed.

Primary gyratory crushers are used in the primary crushing stage. Compared to the cone type crusher, a gyratory crusher has a crushing chamber designed to accept feed material of a relatively large size in relation to the mantle diameter. The primary gyratory crusher offers high capacity thanks to its generously dimensioned circular discharge opening (which provides a much larger area than that of the jaw crusher) and the continuous operation principle (while the reciprocating motion of the jaw crusher produces a batch crushing action). The gyratory crusher has capacities starting from 1200 to above 5000t/h. To have a feed opening corresponding to that of a jaw crusher, the primary gyratory crusher must be much taller and heavier. Therefore, primary gyratories require quite a massive foundation.

The cone crusher is a modified gyratory crusher. The essential difference is that the shorter spindle of the cone crusher is not suspended, as in the gyratory, but is supported in a curved, universal bearing below the gyratory head or cone (Figure 8.2). Power is transmitted from the source to the countershaft to a V-belt or direct drive. The countershaft has a bevel pinion pressed and keyed to it and drives the gear on the eccentric assembly. The eccentric assembly has a tapered, offset bore and provides the means whereby the head and main shaft follow an eccentric path during each cycle of rotation. Cone crushers are used for intermediate and fine crushing after primary crushing. The key factor for the performance of a cone type secondary crusher is the profile of the crushing chamber or cavity. Therefore, there is normally a range of standard cavities available for each crusher, to allow selection of the appropriate cavity for the feed material in question.

Depending on the size of the debris, it may either be ready to enter the recycling process or need to be broken down to obtain a product with workable particle sizes, in which case hydraulic breakers mounted on tracked or wheeled excavators are used. In either case, manual sorting of large pieces of steel, wood, plastics and paper may be required, to minimise the degree of contamination of the final product.

The three types of crushers most commonly used for crushing CDW materials are the jaw crusher, the impact crusher and the gyratory crusher (Figure 4.4). A jaw crusher consists of two plates, with one oscillating back and forth against the other at a fixed angle (Figure 4.4(a)) and it is the most widely used in primary crushing stages (Behera etal., 2014). The jaw crusher can withstand large and hard-to-break pieces of reinforced concrete, which would probably cause the other crushing machines to break down. Therefore, the material is initially reduced in jaw crushers before going through any other crushing operation. The particle size reduction depends on the maximum and minimum size of the gap at the plates (Hansen, 2004).

An impact crusher breaks the CDW materials by striking them with a high-speed rotating impact, which imparts a shearing force on the debris (Figure 4.4(b)). Upon reaching the rotor, the debris is caught by steel teeth or hard blades attached to the rotor. These hurl the materials against the breaker plate, smashing them into smaller particle sizes. Impact crushers provide better grain-size distribution of RA for road construction purposes, and they are less sensitive to material that cannot be crushed, such as steel reinforcement.

Generally, jaw and impact crushers exhibit a large reduction factor, defined as the ratio of the particle size of the input to that of the output material. A jaw crusher crushes only a small proportion of the original aggregate particles but an impact crusher crushes mortar and aggregate particles alike and thus generates a higher amount of fine material (OMahony, 1990).

Gyratory crushers work on the same principle as cone crushers (Figure 4.4(c)). These have a gyratory motion driven by an eccentric wheel. These machines will not accept materials with a large particle size and therefore only jaw or impact crushers should be considered as primary crushers. Gyratory and cone crushers are likely to become jammed by fragments that are too large or too heavy. It is recommended that wood and steel be removed as much as possible before dumping CDW into these crushers. Gyratory and cone crushers have advantages such as relatively low energy consumption, a reasonable amount of control over the particle size of the material and production of low amounts of fine particles (Hansen, 2004).

For better control of the aggregate particle size distribution, it is recommended that the CDW should be processed in at least two crushing stages. First, the demolition methodologies used on-site should be able to reduce individual pieces of debris to a size that the primary crusher in the recycling plant can take. This size depends on the opening feed of the primary crusher, which is normally bigger for large stationary plants than for mobile plants. Therefore, the recycling of CDW materials requires careful planning and communication between all parties involved.

A large proportion of the product from the primary crusher can result in small granules with a particle size distribution that may not satisfy the requirements laid down by the customer after having gone through the other crushing stages. Therefore, it should be possible to adjust the opening feed size of the primary crusher, implying that the secondary crusher should have a relatively large capacity. This will allow maximisation of coarse RA production (e.g., the feed size of the primary crusher should be set to reduce material to the largest size that will fit the secondary crusher).

The choice of using multiple crushing stages mainly depends on the desired quality of the final product and the ratio of the amounts of coarse and fine fractions (Yanagi etal., 1998; Nagataki and Iida, 2001; Nagataki etal., 2004; Dosho etal., 1998; Gokce etal., 2011). When recycling concrete, a greater number of crushing processes produces a more spherical material with lower adhered mortar content (Pedro etal., 2015), thus providing a superior quality of material to work with (Lotfi etal., 2017). However, the use of several crushing stages has some negative consequences as well; in addition to costing more, the final product may contain a greater proportion of finer fractions, which may not always be a suitable material.

The first step of physical beneficiation is crushing and grinding the iron ore to its liberation size, the maximum size where individual particles of gangue are separated from the iron minerals. A flow sheet of a typical iron ore crushing and grinding circuit is shown in Figure 1.2.2 (based on Ref. [4]). This type of flow sheet is usually followed when the crude ore contains below 30% iron. The number of steps involved in crushing and grinding depends on various factors such as the hardness of the ore and the level of impurities present [5].

Jaw and gyratory crushers are used for initial size reduction to convert big rocks into small stones. This is generally followed by a cone crusher. A combination of rod mill and ball mills are then used if the ore must be ground below 325 mesh (45m). Instead of grinding the ore dry, slurry is used as feed for rod or ball mills, to avoid dusting. Oversize and undersize materials are separated using a screen; oversize material goes back for further grinding.

Typically, silica is the main gangue mineral that needs to be separated. Iron ore with high-silica content (more than about 2%) is not considered an acceptable feed for most DR processes. This is due to limitations not in the DR process itself, but the usual customer, an EAF steelmaking shop. EAFs are not designed to handle the large amounts of slag that result from using low-grade iron ores, which makes the BF a better choice in this situation. Besides silica, phosphorus, sulfur, and manganese are other impurities that are not desirable in the product and are removed from the crude ore, if economically and technically feasible.

Beneficiation of copper ores is done almost exclusively by selective froth flotation. Flotation entails first attaching fine copper mineral particles to bubbles rising through an orewater pulp and, second, collecting the copper minerals at the top of the pulp as a briefly stable mineralwaterair froth. Noncopper minerals do not attach to the rising bubbles; they are discarded as tailings. The selectivity of the process is controlled by chemical reagents added to the pulp. The process is continuous and it is done on a large scale103 to 105 tonnes of ore feed per day.

Beneficiation is begun with crushing and wet-grinding the ore to typically 10100m. This ensures that the copper mineral grains are for the most part liberated from the worthless minerals. This comminution is carried out with gyratory crushers and rotary grinding mills. The grinding is usually done with hard ore pieces or hard steel balls, sometimes both. The product of crushing and grinding is a waterparticle pulp, comprising 35% solids.

Flotation is done immediately after grindingin fact, some flotation reagents are added to the grinding mills to ensure good mixing and a lengthy conditioning period. The flotation is done in large (10100m3) cells whose principal functions are to provide: clouds of air bubbles to which the copper minerals of the pulp attach; a means of overflowing the resulting bubblecopper mineral froth; and a means of underflowing the unfloated material into the next cell or to the waste tailings area.

Selective attachment of the copper minerals to the rising air bubbles is obtained by coating the particles with a monolayer of collector molecules. These molecules usually have a sulfur atom at one end and a hydrophobic hydrocarbon tail at the other (e.g., potassium amyl xanthate). Other important reagents are: (i) frothers (usually long-chain alcohols) which give a strong but temporary froth; and (ii) depressants (e.g., CaO, NaCN), which prevent noncopper minerals from floating.

comparison between cone crusher and jaw crusher - virily

All the heavy machine manufacturing in India has led to its development in the past. There are many heavy types of machinery manufactures in the country which has earned credits all around the globe. There are Jaw crushers manufacturers in India, as well as there are cone crusher manufacturers in India.

These machines are used majorly in the field of construction, metallurgy, chemical and silicate industry, mining, and road building. Its a no-brainer that the both these machines, i.e. the jaw crusher and the cone crushers find their utility in the crushing process.

A layman is ought to use the names for these machines alternatively, but there are many differences between the two popular machines. Let us walk through a comparative analysis between the cone crusher and the jaw crusher.

A Jaw crusher is made up of two jaws- the fixed one and the moving one. The machine is used to crush larger sized rocks in a motion resembling that of a nutcracker. The crushing process reduces the size of the stones. The chute that filters the rocks is built in such a way that it narrows towards the base. This helps in filtering the rocks and allows only a particular size of rocks to pass through.

A cone crushers components that is the fixed and the movable cones are similar to that of a jaw crusher. The major operational difference is that the cone crusher utilizes both the cones to grind ores and rocks into smaller pieces. The input is fed in between the two cones and the output is discharged from the discharge hole at the bottom of the cones.

A cone crusher, on the other hand, operated on the principle of rotating oscillatory motion. The pressure on the stones acts when in between the two cones. The two cones do the eccentric swinging movement and produce a force strong enough to crush the hard rocks. The bending force, shearing force and friction force result into a strong force which ultimately breaks the rocks.

A cone crusher is used for secondary crushing. The input to the cone crusher is much smaller and fragmented than that in the jaw crusher. The granularity of the materials that are crushed in the cone crushers is about 35mm to 350 mm. A cone crusher is best suitable for crushing of materials with high hardness like granite, marble, pebbles, dolomite, rhyolite, and diabase.

A Jaw crusher is used in the fields of quarrying, mining, recycling, infrastructure, and construction. It plays the primary role in the crushing of huge stones. Some of the features of the Jaw crushers are:

cone crusher - an overview | sciencedirect topics

Cone crushers were originally designed and developed by Symons around 1920 and therefore are often described as Symons cone crushers. As the mechanisms of crushing in these crushers are similar to gyratory crushers their designs are similar, but in this case the spindle is supported at the bottom of the gyrating cone instead of being suspended as in larger gyratory crushers. Figure5.3 is a schematic diagram of a cone crusher.

The breaking head gyrates inside an inverted truncated cone. These crushers are designed so that the head-to-depth ratio is larger than the standard gyratory crusher and the cone angles are much flatter and the slope of the mantle and the concaves are parallel to each other. The flatter cone angles help to retain the particles longer between the crushing surfaces and therefore produce much finer particles. To prevent damage to the crushing surfaces, the concave or shell of the crushers is held in place by strong springs or hydraulics which yield to permit uncrushable tramp material to pass through.

The secondary crushers are designated as Standard cone crushers having stepped liners and tertiary Short Head cone crushers, which have smoother crushing faces and steeper cone angles of the breaking head. The approximate distance of the annular space at the discharge end designates the size of the cone crushers. A brief summary of the design characteristics is given in Table5.4 for crusher operation in open-circuit and closed-circuit situations.

The Standard cone crushers are for normal use. The Short Head cone crushers are designed for tertiary or quaternary crushing where finer product is required. These crushers are invariably operated in closed circuit. The final product sizes are fine, medium or coarse depending on the closed set spacing, the configuration of the crushing chamber and classifier performance, which is always installed in parallel.

For finer product sizes, i.e., less than 6mm, special cone crushers known as Gyradisc crushers are available. The operation is similar to the standard cone crushers, except that the size reduction is caused more by attrition than by impact [5]. The reduction ratio is around 8:1 and as the product size is relatively small the feed size is limited to less than 50mm with a nip angle between 25 and 30. The Gyradisc crushers have head diameters from around 900 to 2100mm. These crushers are always operated under choke feed conditions. The feed size is less than 50mm and therefore the product size is usually less than 69mm.

Maintenance of the wear components in both gyratory and cone crushers is one of the major operating costs. Wear monitoring is possible using a Faro Arm (Figure 6.10), which is a portable coordinate measurement machine. Ultrasonic profiling is also used. A more advanced system using a laser scanner tool to profile the mantle and concave produces a 3D image of the crushing chamber (Erikson, 2014). Some of the benefits of the liner profiling systems include: improved prediction of mantle and concave liner replacement; identifying asymmetric and high wear areas; measurement of open and closed side settings; and quantifying wear life with competing liner alloys.

Various types of rock fracture occur at different loading rates. For example, rock destruction by a boring machine, a jaw or cone crusher, and a grinding roll machine are within the extent of low loading rates, often called quasistatic loading condition. On the contrary, rock fracture in percussive drilling and blasting happens under high loading rates, usually named dynamic loading condition. This chapter presents loading rate effects on rock strengths, rock fracture toughness, rock fragmentation, energy partitioning, and energy efficiency. Finally, some of engineering applications of loading rate effects are discussed.

In Chapter4, we have already seen the mechanism of crushing in a jaw crusher. Considering it further we can see that when a single particle, marked 1 in Figure11.5a, is nipped between the jaws of a jaw crusher the particle breaks producing fragments, marked 2 and 3 in Figure11.5b. Particles marked 2 are larger than the open set on the crusher and are retained for crushing on the next cycle. Particles of size 3, smaller than the open set of the crusher, can travel down faster and occupy or pass through the lower portion of the crusher while the jaw swings away. In the next cycle the probability of the larger particles (size 2) breaking is greater than the smaller sized particle 3. In the following cycle, therefore, particle size 2 is likely to disappear preferentially and the progeny joins the rest of thesmaller size particles indicated as 3 in Figure11.5c. In the figures, the position of the crushed particles that do not exist after comminution is shaded white (merely to indicate the positions they had occupied before comminution). Particles that have been crushed and travelled down are shown in grey. The figure clearly illustrates the mechanism of crushing and the classification that takes place within the breaking zone during the process, as also illustrated in Figure11.4. This type of breakage process occurs within a jaw crusher, gyratory crusher, roll crusher and rod mills. Equation (11.19) then is a description of the crusher model.

In practice however, instead of a single particle, the feed consists of a combination of particles present in several size fractions. The probability of breakage of some relatively larger sized particles in preference to smaller particles has already been mentioned. For completeness, the curve for the probability of breakage of different particle sizes is again shown in Figure11.6. It can be seen that for particle sizes ranging between 0 K1, the probability of breakage is zero as the particles are too small. Sizes between K1 and K2 are assumed to break according a parabolic curve. Particle sizes greater than K2 would always be broken. According to Whiten [16], this classification function Ci, representing the probability of a particle of size di entering the breakage stage of the crusher, may be expressed as

The classification function can be readily expressed as a lower triangular matrix [1,16] where the elements represent the proportion of particles in each size interval that would break. To construct a mathematical model to relate product and feed sizes where the crusher feed contains a proportion of particles which are smaller than the closed set and hence will pass through the crusher with little or no breakage, Whiten [16] advocated a crusher model as shown in Figure11.7.

The considerations in Figure11.7 are similar to the general model for size reduction illustrated in Figure11.4 except in this case the feed is initially directed to a classifier, which eliminates particle sizes less than K1. The coarse classifier product then enters the crushing zone. Thus, only the crushable larger size material enters the crusher zone. The crusher product iscombined with the main feed and the process repeated. The undersize from the classifier is the product.

While considering the above aspects of a model of crushers, it is important to remember that the size reduction process in commercial operations is continuous over long periods of time. In actual practice, therefore, the same operation is repeated over long periods, so the general expression for product size must take this factor into account. Hence, a parameter v is introduced to represent the number of cycles of operation. As all cycles are assumed identical the general model given in Equation (11.31) should, therefore, be modified as

Multiple vectors B C written in matrix form:BC=0.580000.200.60000.120.180.6100.040.090.20.571.000000.700000.4500000=0581+00+00+000.580+00.7+00+000580+00+00.45+000.580+00+00+000.21+0.60+00+000.20+0.60.7+00+000.20+0.60+00.45+000.20+0.60+00+000.121+0.180+0.610+000.120+0.180.7+0.610+000.120+0.180+0.610.45+000.120+0.180+0.610+000.041+0.090+0.20+0.5700.040+0.090.7+0.20+0.5700.040+0.090+0.20.45+0.5700.040+0.090+0.20+0.570=0.580000.20.42000.120.1260.274500.040.0630.090

Now determine (I B C) and (I C)(IBC)=10.5800000000.210.42000000.1200.12610.27450000.0400.06300.0910=0.420000.20.58000.120.1260.725500.040.0630.091and(IC)=000000.300000.5500001

Now find the values of x1, x2, x3 and x4 as(0.42x1)+(0x2)+(0x3)+(0x4)=10,thereforex1=23.8(0.2x1)+(0.58x2)+(0x3)+(0x4)=33,thereforex2=65.1(0.12x1)+(0.126x2)+(0.7255x3)+(0x4)=32,thereforex3=59.4(0.04x1)+(0.063x2)+(0.09x3)+(1x4)=20,thereforex4=30.4

In this process, mined quartz is crushed into pieces using crushing/smashing equipment. Generally, the quartz smashing plant comprises a jaw smasher, a cone crusher, an impact smasher, a vibrating feeder, a vibrating screen, and a belt conveyor. The vibrating feeder feeds materials to the jaw crusher for essential crushing. At that point, the yielding material from the jaw crusher is moved to a cone crusher for optional crushing, and afterward to effect for the third time crushing. As part of next process, the squashed quartz is moved to a vibrating screen for sieving to various sizes.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100mm. They are classified as jaw, gyratory, and cone crushers based on compression, cutter mill based on shear, and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake. A Fritsch jaw crusher with maximal feed size 95mm, final fineness (depends on gap setting) 0.315mm, and maximal continuous throughput 250Kg/h is shown in Fig. 2.8.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing hard metal scrap for different hard metal recycling processes. Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor. Crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough to pass through the openings of the grating or screen. The size of the product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure, forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions. A design for a hammer crusher (Fig. 2.9) essentially allows a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, the circulation of suspended matter in the gas between A and B zones is established and the high pressure of air in the discharging unit of crusher is reduced.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100 mm in size. They are classified as jaw, gyratory and cone crushers based on compression, cutter mill based on shear and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing of hard metal scrap for different hard metal recycling processes.

Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor and crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough pass through the openings of the grating or screen. The size of product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around of the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions.

A design for a hammer crusher (Figure 2.6) allows essentially a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, circulation of suspended matter in the gas between A- and B-zones is established and high pressure of air in the discharging unit of crusher is reduced.

For a particular operation where the ore size is known, it is necessary to estimate the diameter of rolls required for a specific degree of size reduction. To estimate the roll diameter, it is convenient to assume that the particle to be crushed is spherical and roll surfaces are smooth. Figure6.2 shows a spherical particle about to enter the crushing zone of a roll crusher and is about to be nipped. For rolls that have equal radius and length, tangents drawn at the point of contact of the particle and the two rolls meet to form the nip angle (2). From simple geometry it can be seen that for a particle of size d, nipped between two rolls of radius R:

Equation (6.2) indicates that to estimate the radius R of the roll, the nip angle is required. The nip angle on its part will depend on the coefficient of friction, , between the roll surface and the particle surface. To estimate the coefficient of friction, consider a compressive force, F, exerted by the rolls on the particle just prior to crushing, operating normal to the roll surface, at the point of contact, and the frictional force between the roll and particle acting along a tangent to the roll surface at the point of contact. The frictional force is a function of the compressive force F and is given by the expression, F. If we consider the vertical components of these forces, and neglect the force due to gravity, then it can be seen that at the point of contact (Figure6.2) for the particle to be just nipped by the rolls, the equilibrium conditions apply where

As the friction coefficient is roughly between 0.20 and 0.30, the nip angle has a value of about 1117. However, when the rolls are in motion the friction characteristics between the ore particle will depend on the speed of the rolls. According to Wills [6], the speed is related to the kinetic coefficient of friction of the revolving rolls, K, by the relation

Equation (6.4) shows that the K values decrease slightly with increasing speed. For speed changes between 150 and 200rpm and ranging from 0.2 to 0.3, the value of K changes between 0.037 and 0.056. Equation (6.2) can be used to select the size of roll crushers for specific requirements. For nip angles between 11 and 17, Figure6.3 indicates the roll sizes calculated for different maximum feed sizes for a set of 12.5mm.

The maximum particle size of a limestone sample received from a cone crusher was 2.5cm. It was required to further crush it down to 0.5cm in a roll crusher with smooth rolls. The friction coefficient between steel and particles was 0.25, if the rolls were set at 6.3mm and both revolved to crush, estimate the diameter of the rolls.

It is generally observed that rolls can accept particles sizes larger than the calculated diameters and larger nip angles when the rate of entry of feed in crushing zone is comparable with the speed of rotation of the rolls.

Jaw crushers are mainly used as primary crushers to produce material that can be transported by belt conveyors to the next crushing stages. The crushing process takes place between a fixed jaw and a moving jaw. The moving jaw dies are mounted on a pitman that has a reciprocating motion. The jaw dies must be replaced regularly due to wear. Figure 8.1 shows two basic types of jaw crushers: single toggle and double toggle. In the single toggle jaw crusher, an eccentric shaft is installed on the top of the crusher. Shaft rotation causes, along with the toggle plate, a compressive action of the moving jaw. A double toggle crusher has, basically, two shafts and two toggle plates. The first shaft is a pivoting shaft on the top of the crusher, while the other is an eccentric shaft that drives both toggle plates. The moving jaw has a pure reciprocating motion toward the fixed jaw. The crushing force is doubled compared to single toggle crushers and it can crush very hard ores. The jaw crusher is reliable and robust and therefore quite popular in primary crushing plants. The capacity of jaw crushers is limited, so they are typically used for small or medium projects up to approximately 1600t/h. Vibrating screens are often placed ahead of the jaw crushers to remove undersize material, or scalp the feed, and thereby increase the capacity of the primary crushing operation.

Both cone and gyratory crushers, as shown in Figure 8.2, have an oscillating shaft. The material is crushed in a crushing cavity, between an external fixed element (bowl liner) and an internal moving element (mantle) mounted on the oscillating shaft assembly. An eccentric shaft rotated by a gear and pinion produces the oscillating movement of the main shaft. The eccentricity causes the cone head to oscillate between the open side setting (o.s.s.) and closed side setting (c.s.s.). In addition to c.s.s., eccentricity is one of the major factors that determine the capacity of gyratory and cone crushers. The fragmentation of the material results from the continuous compression that takes place between the mantle and bowl liners. An additional crushing effect occurs between the compressed particles, resulting in less wear of the liners. This is also called interparticle crushing. The gyratory crushers are equipped with a hydraulic setting adjustment system, which adjusts c.s.s. and thus affects product size distribution. Depending on cone type, the c.s.s. setting can be adjusted in two ways. The first way is by rotating the bowl against the threads so that the vertical position of the outer wear part (concave) is changed. One advantage of this adjustment type is that the liners wear more evenly. Another principle of setting adjustment is by lifting/lowering the main shaft. An advantage of this is that adjustment can be done continuously under load. To optimize operating costs and improve the product shape, as a rule of thumb, it is recommended that cones always be choke-fed, meaning that the cavity should be as full of rock material as possible. This can be easily achieved by using a stockpile or a silo to regulate the inevitable fluctuation of feed material flow. Level monitoring devices that detect the maximum and minimum levels of the material are used to start and stop the feed of material to the crusher as needed.

Primary gyratory crushers are used in the primary crushing stage. Compared to the cone type crusher, a gyratory crusher has a crushing chamber designed to accept feed material of a relatively large size in relation to the mantle diameter. The primary gyratory crusher offers high capacity thanks to its generously dimensioned circular discharge opening (which provides a much larger area than that of the jaw crusher) and the continuous operation principle (while the reciprocating motion of the jaw crusher produces a batch crushing action). The gyratory crusher has capacities starting from 1200 to above 5000t/h. To have a feed opening corresponding to that of a jaw crusher, the primary gyratory crusher must be much taller and heavier. Therefore, primary gyratories require quite a massive foundation.

The cone crusher is a modified gyratory crusher. The essential difference is that the shorter spindle of the cone crusher is not suspended, as in the gyratory, but is supported in a curved, universal bearing below the gyratory head or cone (Figure 8.2). Power is transmitted from the source to the countershaft to a V-belt or direct drive. The countershaft has a bevel pinion pressed and keyed to it and drives the gear on the eccentric assembly. The eccentric assembly has a tapered, offset bore and provides the means whereby the head and main shaft follow an eccentric path during each cycle of rotation. Cone crushers are used for intermediate and fine crushing after primary crushing. The key factor for the performance of a cone type secondary crusher is the profile of the crushing chamber or cavity. Therefore, there is normally a range of standard cavities available for each crusher, to allow selection of the appropriate cavity for the feed material in question.

The main task of renovation construction waste handling is the separation of lightweight impurities and construction waste. The rolling crusher with opposite rollers is capable of crushing the brittle debris and compressing the lightweight materials by the low-speed and high-pressure extrusion of the two opposite rollers. As the gap between the opposite rollers, rotation speed, and pressure are all adjustable, materials of different scales in renovation construction waste can be handled.

The concrete C&D waste recycling process of impact crusher+cone crusher+hoop-roller grinder is also capable of handling brick waste. In general, the secondary crushing using the cone crusher in this process with an enclosed crusher is a process of multicrushing, and the water content of waste will become an important affecting factor. The wet waste will be adhered on the wall of the grinding chamber, and the crushing efficiency and waste discharging will be affected. When the climate is humid, only coarse impact crushing is performed and in this case the crushed materials are used for roadbase materials. Otherwise, three consecutive crushings are performed and the recycled coarse aggregate, fine aggregate, and powder materials are collected, respectively.

The brick and concrete C&D waste recycling process of impact crusher+rolling crusher+hoop-roller grinder is also capable of handling the concrete waste. In this case, the water content of waste will not be an important affecting factor. This process is suitable in the regions with wet climates.

The renovation C&D waste recycling process of rolling crusher (coarse/primary crushing)+rolling crusher (intermediate/secondary crushing)+rolling crusher (fine/tertiary crushing) is also capable of handling the two kinds of waste discussed earlier. The particle size of debris is crushed less than 20mm and the lightweight materials are compressed, and they are separated using the drum sieve. The energy consumption is low in this process; however, the shape of products is not good (usually flat and with cracks). There is no problem in roadbase material and raw materials of prefabricated product production. But molders (the rotation of rotors in crusher is used to polish the edge and corner) should be used for premixed concrete and mortar production.

cone crusher parts

The cast steel spider cap has been designed to serve as a feed distribution plate for coarse materials. It is recessed on the 22, 30, 36 and 48-in. crushers. For fine materials, the wobble plate feeder a more effective means of distributing the feed is recommended.

The annealed cast steel top shell and spider are made in one piece. The spider is of the three arm type, equipped with a self-aligning, Scor-Proof plastic ball and socket bearing in crusher sizes 22 to 48-in., and with an hourglass type bearing in sizes above 48-in. The lubricant is sealed in with a garter type oil seal. Bearings can be lubricated from outside the topshell on the 51, 60 and 84-in. crushers through oil holes in spider caps of the four smaller sizes.

The mainshaft is of high grade forged steel, annealed for stress relief. It is tapered to gauge for head center fit. The bottom of the shaft is fitted with a polished bronze step bearing. The journal for the spider bearing is formed by a sleeve shrunk on the shaft on the 51, 60 and 84-in. crushers. Short, heavy mainshaft design results in long life.

The step bearing consists of a bronze mainshaft step, a bronze piston wearing plate, and an alloy steel washer between the two. The washer is drilled for oil cooling and lubrication. Both the mainshaft step and the piston wearing plate are made of high lead bronze, selected to give the best bearing surface. The washer and plate are pinned in place, and the bearing surfaces are grooved to permit distribution of the lubricating oil.

The Mantalloy head mantle of this cone crusher is a replaceable wearing surface. It is made of alloyed manganese steel, and is held in place with a self-tightening head nut. On the 51-in. Hydrocone crushers and larger, the bottom portion of the mantle is ground to gauge to fit the head center, and the top portion is zinced. For crushers smaller than 51-in., the entire inner surface of the mantle is ground to gauge and no zincing is required.

The Mantalloy concave ring, or the stationary crushing surface, is available in three standard types, coarse, intermediate and fine. Helices, cast into the bottom of the concave ring, engage similar helices on the top of a cast steel concave support ring. The support ring is held by a key to the top shell to facilitate assembly, after which it is supported on the bottom shell. The helical surfaces make the concave ring self-tightening; no zincing is required.

The dust seal is a plastic ring suspended in a housing from the head center and encircling the dust collar. It is designed to accommodate the vertical adjustment and the gyrating and rotating motion of the head. All wearing parts are replaceable. The crusher is fitted with a connection for introducing low pressure air inside the seal for additional dust protection.

The eccentric is made of high carbon cast steel and fitted with a bronze inner wearing sleeve. The eccentric turns in a bronze bottom shell bushing. Both sleeve and bushing are replaceable. The eccentric throw can be changed in the field by installing a different sleeve.

The alloy steel pinion is mounted on a turned shaft. The cast steel pinionshaft housing is bolted to the machined opening in the bottom shell. It is equipped with anti-friction bearings sealed inside and out, and has separate pool lubrication in all sizes except the 36 and 48-inch machines. The 36 and 48-inch Hydrocone crushers have sleeve type counter-shaft bearings which are lubricated by the external oiling system.

The annealed cast steel bottom shell is of the three arm, open discharge type, bored to gauge for the top shell and eccentric bushing. It is bored and faced for the bottom plate, pinionshaft bearing and dust collar.

The external oil conditioning system furnished with Hydrocone crushers consists of a large oil storage tank on which are mounted a condenser type cooler, pressure type filter, motor, and a pump which pumps the lubricant to the crusher automatically. These units both cool and filter the oil. The accumulator and tank for the Automatic Reset are mounted separately from the oil storage tank.

All oil conditioning systems are equipped with oil flow and temperature safety switches which are adjusted to open the motor circuit and stop the crusher if the temperature becomes too high or if there is not a sufficient flow of oil. Flexible hose connects the lubricating unit to the crushers, greatly reducing the number of pipe fittings required and simplifying the installation.

Oil for the tank is pumped through the filter and cooler to the step bearing and up the inner eccentric bearing. It flows down the outer eccentric bearing, lubricates the gear and pinion, then returns to the tank. Tank capacities vary from 30 gallons for the 22-in. Hydrocone crusher to 240 gallons for the 84-in. machine.

23. Feed Plate 24. Screw 25. Torch Ring 26. Locking Bolt 27. Dust Shell 28. Clamp Ring 29. Adjustment Ring 30. Mainshaft Pin 31. Pin 32. Socket Liner 33. Socket 34. Eccentric 35. Eccentric Bushing 36. Counterweight 37. Counterweight Guard 38. Gear 39. Thrust Bearing 40. Countershaft Box 41. Countershaft Box Guard 42. Oil Finger Cover 43. Oil Finger 44. Countershaft Bushing 45. Countershaft 46. Pinion

CRUSHING CHAMBER may be any one of three standard types (Fine, Intermediate and Coarse) designed to assure a cubical, well-graded product. Shape of mantle and concave ring, and the range of adjustment available, results in maximum life and minimum scrap when replacing parts. Special crushing chambers also available.

BEVEL PINION AND GEAR are of the spiral design in the larger sizes provide greater tooth contact and smooth, trouble-free operation under most severe conditions. Bevel spur and pinion gears are used on smaller size Hydrocone crushers.

INNER CRUSHING CONE or mantle is one-piece Mantalloy casting held in place by a self-locking head nut. Complete contact of the ground inner surface with steel head center eliminates need for zincing in all but the larger sizes.

OUTER CRUSHING RING or concave ring is one-piece Mantalloy casting. Necessity of zincing or clamping concave ring in place is eliminated by ground-to-fit finish on outer surface and the use of an effective self-locking device.

3-PIECE STEP BEARING accommodates gyrating motion of main shaft and transmits crushing pressure to hydraulic piston. Designed to withstand bearing pressures much greater than those encountered in actual service.

While it is one of the major parts in the machine, there are few essential differences between the adjustment ring in the 10 ft. crusher and in the smaller machines, except as to size. Material of the ring which weighs 70,000 pounds is cast steel. Rigidity of the adjustment ring cross-section is essential. In this case, increased section thickness, with ordinary carbon steels, results in a reduction in deflection.

This part, which is screwed into the adjustment ring, is the means of setting of the machine. Adjustment is performed by rotating the bowl relative to the adjustment ring. In the 10 ft. machine provision has been made to adjust the setting during crushing. This increases the availability of the crusher substantially. Past practice had been to stop feed to the crusher during adjustment.

During crushing the position of the bowl and adjustment ring is maintained on the slant flank of the threads by means of the crushing force. The slant flank helps in centering the two elements. The clamp ring acts somewhat like a locking device to take up clearances. Ideally, the clamping cylinders do not have to have any greater capacity than is necessary to overcome the weight of the bowl. Practically, the clamp ring capacity is many times higher to withstand tramp passage.

To adjust the setting of the machine, hydraulic rams are used to rotate or counter-rotate the bowl in the adjustment ring. The seal between the adjustment cap and hopper is a simple, continuous, tightly fitting flap which allows free, relative rotation but prevents intrusion of dust into the thread area. The lower end of the thread connection between bowl and adjustment ring is also sealed. The hopper assembly, which is actually a part of the bowl assembly, including the hopper, hopper liner and cap closure, comprises the section in which the feed is introduced. It includes a dead bed, reducing wear and shock from the fall of the feed from the feeder above.

The adjustment rams are pressurized hydraulically and provide a setting adjustment. For normal adjustment of setting due to wear, installation and removal of the bowl is made through a swivel sheave and a cable turn applied around the adjustment cap. The bowl is then rotated by use of the maintenance crane.

The crushing head, similar in section to that of the 7 ft. machine, had three-dimensional photoelastic studies made using the technique of freezing stresses into a loaded plastic model, sectioning the model and examining the slices under polarized light. As a result of these techniques, stresses have been reduced. The core of the head consists of six massive ribs to support the crushing forces on the surface of the head. The head is cast steel.

The main shaft is of turbine rotor steel of high quality and refinement, the chemistry of which is low carbon to reduce the possibility of heat checking. It includes chrome nickel additions for deep hardening, notch toughness and resistance to fatigue. The shaft extension is provided to reduce the relative strain between the head and shaft and thereby reduce fretting in the fit, which has a heavy press. The shaft diameter is 50 percent greater than the 7 ft. crusher shaft. As a result, the shaft operates at lower values of bending stress and deflection. Reduced deflection produces distinct benefits in bearing behavior because of uniformity of oil film under load. Reduced stresses assure longer life and resistance to overloads.

The head-shaft assembly is supported by the socket and socket liner which is, in essence, a spherical thrust bearing. The function is to carry the vertical component of the crushing force while allowing the head to oscillate around the theoretical center of rotation.

The socket of carbon steel is of dowelled design. The forces between the head and the socket are normal to the spherical surface of the head and pass through the theoretical center. The line of action of these forces is such that practically pure compression is applied to the socket and liner, reducing deflection and stress to a minimum and promoting good bearing performance.

The force distribution throughout the crusher is based on a vector diagram of the cavity forces during crushing and the reactions at various associated loading points in the crusher. The vector diagram establishes their relative magnitude, direction and points of application. The actual magnitude of these forces is established by the crushing force necessary to lift the adjustment ring off the frame seat. This condition represents the maximum allowable force for normal crushing.

A baffle ring attached to the head is sub-merged around its entire periphery in a water trough resting on the socket. Dust tends to settle into the trough and must be continuously removed to prevent caking. For this reason, water is continuously fed through specially designed nozzles which scour the trough. Overflow water is carried off by internal piping and passages. The seal chamber is vented to atmosphere to prevent siphoning which may cause oil contamination of the water or vice versa.

The gears are straight tooth bevel gears and are designed to AGMA standards using a computerized program which, upon input of the basic information, such as DP, diameters, gear ratio, material properties, tooth type, provides a complete printout of the rated power on the basis of tooth strength and surface durability of the gear. The factor of safety on the gear is in excess of three on the strength basis and in excess of two on the durability basis.

5 types of stone crushers | application and maintenance

Stone crusher is mainly used for crushing operation in quarry crushing plant and mining plant. There are 5 types of stone crushers: jaw crusher, impact crusher, hammer crusher, cone crusher, and VIS crusher. What is the application of the 5 types of stone crushers and how to maintenance? This article is about a thorough introduction.

Jaw crusher is a heavy-duty which crushing the hard rock. Therefore, the jaw crusher parts need to be very hard and durable. In particular, the two components of the jaw crusher work, the fixed jaw, and the movable jaw. The crushers machine are widely used in industries of mining, building materials, roads, railways, water conservancy, and chemical. The types of jaw stone crusher: single toggle jaw crusher and double toggle jaw crusher.

During the maintenance of the jaw crushers, wear part is a common occurrence. This is also the main wear in the stone crushing line. Therefore, we recommend that customers purchase high-quality jaw crushers, which are more durable and have better running performance. During use, it can avoid many unnecessary wear problems and reduce the trouble of frequently changing parts. 8 notes of jaw crusher routine maintenance.

1. Check the heat of the bearing. The temperature of rolling bearings doesnt exceed 70 C. If exceeds the specified temperature, it must stop and immediately check and troubleshoot. 2. Check whether the lubrication system is normal. Whether there is a crash of a gear oil pump. Observe the value of the oil pressure gauge and check whether the lubrication system in the fuel tank leaks oil. If find the above various conditions are abnormal, dealt with they in a timely manner. The place of movable jaw suspension bearing and the elbow, it should lubricate regularly which automatic or manual oil pump lubrication. 3. Check whether the oil contains metal powder and other contaminants. If there is dirt, stop the bearing and other parts to check. 4. Check whether there are loose joints between the bolts and flywheel keys of each part. 5. Check the wear of the gear plate and transmission components, and whether the lever spring is normal. 6. Always keep the equipment clean, so that there is no dust, no oil, no oil leakage, no water leakage, no leakage, no leakage. Especially pay attention to prevent dust from entering the lubrication system and lubrication parts. 7. Clean the filter cooler regularly, and wait until it is completely dried before washing. 8. Regularly change the lubricating oil in the fuel tank. Usually once every six months.

The impact crusher crushing the soft and very hard materials, even if there is moisture in the material. The types of stone crushers are widely used in building materials, ore crushing, railways, highways, energy, transportation, energy, cement, mining, chemical and other industries for medium and fine materials.

1. The jaw crushers run smoothly. When the vibration quantity of the machine suddenly increases, it should stop immediately to find out the cause. 2. Under normal conditions, the temperature rise of the bearing should not exceed 35, and the maximum temperature should not exceed 70 . If it exceeds 70, stop immediately and find out the cause. 3. When the plate hammer wear reaches the limit mark, it should be turned around or replaced in time. 4. After assembling or replacing the hammer, it must maintain the rotor balance, and the static balance should not exceed 0.25kg.m. 5. When the rack lining wear, replace it in time which can avoid wearing the casing. 6. Check the tightening status of all bolts before starting each time.

1. Always pay attention to and timely lubrication of the friction surface. 2. The lubricating oil used in the impact crusher should be determined according to the location of the crusher machine, temperature, and other conditions.

Cone crusher is an advanced hydraulic crusher with high power, large crushing ratio, and high productivity. Generally, it uses as a secondary crusher to break medium-hard materials, and use as fine crushers in artificial sand making process plants and quarry plant. Cone Crusher is a hydraulic crushing machine suitable for use in raw materials in the metallurgical, construction, road construction, chemical, and silicate industries. Types of cone stone crushers: GP cone crusher namely single-cylinder hydraulic cone crusher, HP cone crusher namely multi-cylinder hydraulic cone crusher, Compound cone crusher.

1. There must be a de-ironing device to prevent the crushing chamber from passing through the iron. If the iron is frequently over-exposed, it may cause a shaft breakage accident. 2. To be fully loaded, otherwise, the product size will be too thick. 3. The crushing ratio in the production line should be reasonable, so as to maximize the efficiency of the crusher. 4. The spring pressure should not be too tight. If the pressure is too high, the shaft breakage will occur. If the pressure is too small, the spring will jump frequently which affecting the normal operation of the crusher. The product size will become thicker. 5. The temperature of the lubricating oil should not be too high or too low. Otherwise, it will affect the operation of the machine. 6. A lubricating oil should be replaced frequently. Not too dirty. If it is too dirty, it will accelerate the wear of gears, bowl-shaped tiles, bushings, etc., and even make the bushings die. 7. The drive belt installation should not be too tight. Otherwise, it will cause the driveshaft to rotate inflexible or broken. It should not be too loose, otherwise, it will cause the crusher to suffocate. 8. The feeding material should not be too wet and too sticky, the fine particles should not be too much, and it should not be too big. Otherwise, it will cause boring.

Hammer crusher is a high-speed rotary crushing machine. The crusher is suitable for crushing medium hardness materials in industrial sectors such as cement, chemical, electric power, and metallurgy. The medium hardness materials such as limestone, slag, coke, coal and other materials in the medium and fine crushing operations. The hammer mill rock crusher can be used not only for crushing plant, sand making plant, it also can replace cone crushers in mining plant. The types of stone hammers crushers: single-stage hammer crusher, high-efficiency hammer crusher, sand making machine, vertical shaft hammer rock crusher, reversible hammer crusher, double rotor hammer crusher, ring hammer crusher.

1. It should contact the upper and lower procedures related to the machine before starting to stop. And perform the correct operation in the order of opening and stopping. 2. To start the empty machine and should empty the material in the crushing chamber and then stop. 3. Always check all the anchor bolts and lining bolts of the equipment for looseness. If loose, tighten them in time. 4. Check the use of easy-to-wear and easy-to-wear parts such as hammerheads and linings. If we find the problems, they should be disposed of in time. 5. Look at the lubrication and keep the lubrication system in good condition. 6. Keep the feed even and take care not to feed metal debris. 7. Pay attention to check whether the discharge granularity meets the quality requirements. If it does not meet, replace the purlin or adjust the height of the purlin bracket.

VSI crusher is a kind of sand making machine which uses in sand plant and quarry plant. The VSI sand making machine is a hydraulically impact sand making machine that is 50% more energy-efficient than conventional machines. It can make all kinds of rocks, sandstones and river pebbles with construction sand of various grain sizes. The uniformity of sand and high compressive strength.

Firstly, the inspection of sand making equipment before starting. Check whether the machine cavity inspection door is closed. If no close, close it to prevent the material from flying out and posing a danger to the staff. And the lubricating oil of the equipment should also be inspected.

Thirdly, the starting sequence of the VSI series crushers must be correct. It is generally installed in the following order: vibrating feeder jaw crusher sand making machine vibrating screen sand washing machine. In the event of a shutdown, you need to operate in reverse order.

Finally, it is necessary to ensure the normal feed rate and volume of the equipment during the production process. We must strictly follow the feed size required by the equipment. Forbidding to enter metal materials and large stones to prevent damage to the parts of the equipment. If we find severe vibration or loud noise during the production process, stop and inspect in time for timely treatment.

Jiangxi Shicheng stone crusher manufacturer is a new and high-tech factory specialized in R&D and manufacturing crushing lines, beneficial equipment,sand-making machinery and grinding plants. Read More

jaw crushers | cone crusher | mining technology - pilot crushtec

Pilot Crushtec International (PTY) Ltd is South Africas leading supplier of a full range of heavy-duty crushing, screening and materials handling products, parts and services. Whether youre looking for jaw crushers, cone crusher, screens, feeders, magnets, tower lights or conveyors, youll find the appropriate solution to meet your needs in our fit-for-purpose selection of world-class equipment.

We stock a number of well-known OEM and in-house brands to help you add reliable performance to your equipment arsenal. This includes the full range of METSO Mobile crushers and screens, Pilot Modular equipment, Generac Tower Lights, EDGE Innovate and Rubble Master. With Pilot Crushtecs products, youre ensured of quality and efficiency from credible and trusted manufacturers, who are proficient in adequately meeting the specific needs of your operations and industry.

Weve made it our mission to partner with our valued clients throughout the service delivery process. Our knowledgeable team will provide you with expert advice on which components and machinery are best suited to the requirements of your project through our advanced simulation software and plant layout programmes. Over time, we can also assist you with quick and efficient supply of OEM spare parts, in order to ensure that your equipment runs at maximum capacity.

We prioritise convenience, efficiency and performance with all our new quarrying and mining equipment, so that you can focus on your operations. View our list of new products below or contact us for any additional enquiries.

Pilot Crushtec International (Pty) Ltd is South Africas leading supplier of mobile and semi-mobile crushing, screening, recycling, sand washing, stockpiling, compacting and material handling solutions. Our product range includes jaw crushers, cone crushers, vertical shaft impact (VSI) crushers, impact crushers, screens and conveyors.

jaw crusher vs cone crusher | which is the better crusher | m&c

In the makrket, two most popular aggregate crushing equipments include: Cone Crusher vs Jaw Crusher. Although the cone crusher and jaw crusher are used to crush materials, what is the difference between the two crushers?Table of Contents Jaw CrusherAdvantages of Jaw CrusherCone CrusherAdvantages of Cone CrusherWhats The Difference Between Jaw Crusher and Cone Crusher1. Different Working Principle2. Adapt To Different Material3. Different Feeding Method4. Different Final CostHow To Choose Right Crusher

Jaw crusher has a moving jaw plate and a fixed jaw plate, which are wear-resistant and pressure resistant. During the operation, the jaw plate simulates animal occlusion, and the feeding port is large, so it is very suitable to deal with the coarse crushing of large block materials;

Cone crusher, with various types, large processing capacity range, high efficiency, low energy consumption, uniform product size, which is suitable for medium and fine crushing of various ores and rocks.

Jaw Crusher: The crushing chamber of jaw crusher is composed of fixed jaw plate and movable jaw plate. The fixed jaw plate is fixed vertically on the fuselage body, and the movable jaw plate is in the inclined position. The movable jaw plate continuously moves to the fixed jaw plate periodically. When the two jaw plateare close, the material is crushed by extrusion. When the movable jaw plate is far away, the broken material slides down and is discharged from the crushing chamber.

Cone Crusher: The motor of the cone crusher drives the transmission shaft to drive the eccentric sleeve to rotate, and the movable cone swings back and forth under the force of the eccentric sleeve, the movable cone is periodically close to and far away from the fixed cone, and repeatedly extrudes and impacts the material until the material meeting the requirements falls to discharge from the crushing chamber.

The gyratory body of cone crusher is higher, twice or three times of jaw crusher, and the workshop cost is larger. The weight of cone crusher is larger than that of jaw crusher with the same output by 1-2 times, so the equipment cost is higher. The installation and maintenance of cone crusher is more complicated than jaw crusher.

Therefore, when crushing hard rocks and long rocks, the cone crusher should be preferred. This design is more favorable. When wet and viscous ore is crushed, or medium, small concentrators, jaw crushers are suitable.

The weight of cone crusher with the same output is about twice that of jaw crusher, so the cost of civil engineering and later maintenance is higher, but the cone crusher has deep crushing cavity, large capacity and low energy consumption.