jaw crushers

jaw crushers - meka crushing & screening plants

Precision-machined, drop-forged, heat-treated Cr-Si-Mn-Mo SAE 4140 (42Cr, Mo4) steel eccentric shaft. The larger eccentricity of pitman shaft provides a motion that forces the material to the bottom of the jaw plate.

Spherical, self-aligning roller bearings, straight-bore pitman bearings and tapered-bore body bearings provide maximum strength to the pitman shaft and bearings for a long extended maintenance life.

The jaw crusher is one of the most indispensable and preferred machines because of its performance and durability. Depending on plant layout, jaw Crusher can be produced on wheels, skid-mounted or fixed to the concrete foundations.

jaw crusher working principle

A sectional view of the single-toggle type of jaw crusher is shown below.In one respect, the working principle and application of this machine are similar to all types of rock crushers, the movable jaw has its maximum movement at the top of the crushing chamber, and minimum movement at the discharge point. The motion is, however, a more complex one than the Dodge motion, being the resultant of the circular motion of the eccentric shaft at the top of the swing jaw. combined with the rocking action of the inclined toggle plate at the bottom of this jaw. The motion at the receiving opening is elliptical; at the discharge opening, it is a thin crescent, whose chord is inclined upwardly toward the stationary jaw. Thus, at all points in the crushing chamber, the motion has both, vertical and horizontal, components.

It will be noted that the motion is a rocking one. When the swing jaw is rising, it is opening, at the top, during the first half of the stroke, and closing during the second half, whereas the bottom of the jaw is closing during the entire up-stroke. A reversal of this motion occurs during the downstroke of the eccentric.

The horizontal component of motion (throw) at the discharge point of the single-toggle jaw crusher is greater than the throw of the Dodge crusher at that point; in fact, it is about three-fourths that of Blake machines of similar short-side receiving-opening dimensions. The combination of favorable crushing angle, and nonchoking jaw plates, used in this machine, promotes a much freer action through the choke zone than that in the Dodge crusher. Capacities compare very favorably with comparable sizes of the Blake machine with non-choking plates, and permissible discharge settings are finer. A table of ratings is given.

The single-toggle type jaw crusher has been developed extensively. Because of its simplicity, lightweight, moderate cost, and good capacity, it has found quite a wide field of application in portable crushing rigs. It also fits into the small, single-stage mining operation much better than the slower Dodge type. Some years since this type was developed with very wide openings for reduction crushing applications, but it was not able to seriously challenge the gyratory in this field, especially when the high-speed modern versions of the latter type were introduced.

Due to the pronounced vertical components of motion in the single-toggle machine, it is obvious that a wiping action takes place during the closing strokes; either, the swing jaw must slip on the material, or the material must slip along the stationary jaw. It is inevitable that such action should result in accelerated wear of the jaw plates; consequently, the single-toggle crusher is not an economical machine for reducing highly abrasive, or very hard, tough rock. Moreover, the large motion at the receiving opening greatly accentuates shocks incidental to handling the latter class of material, and the full impact of these shocks must be absorbed by the bearings in the top of the swing jaw.

The single-toggle machine, like the Dodge type, is capable of making a high ratio-of-reduction, a faculty which enables it to perform a single-stage reduction of hand-loaded, mine run ore to a suitable ball mill, or rod mill, feed.

Within the limits of its capacity, and size of receiving openings, it is admirably suited for such operations. Small gravel plant operations are also suited to this type of crusher, although it should not be used where the gravel deposit contains extremely hard boulders. The crusher is easy to adjust, and, in common with most machines of the jaw type, is a simple crusher to maintain.

As rock particles are compressed between the inclined faces of the mantle and concaves there is a tendency for them to slip upward. Slippage occurs in all crushers, even in ideal conditions. Only the particles weight and the friction between it and the crusher surfaces counteract this tendency. In particular, very hard rock tends to slip upward rather than break. Choke feeding this kind of material can overload the motor, leaving no option but to regulate the feed. Smaller particles, which weigh less, and harder particles, which are more resistant to breakage, will tend to slip more. Anything that reduces friction, such as spray water or feed moisture, will promote slippage.

Leading is a technique for measuring the gap between fixed and moveable jaws. The procedure is performed while the crusher is running empty. A lead plug is lowered on a lanyard to the choke point, then removed and measured to find out how much thickness remains after the crusher has compressed it. This measures the closed side setting. The open side setting is equal to this measurement plus the throw of the mantle. The minimum safe closed side setting depends on:

Blake (Double Toggle) Originally the standard jaw crusher used for primary and secondary crushing of hard, tough abrasive rocks. Also for sticky feeds. Relatively coarse slabby product, with minimum fines.

Overhead Pivot (Double Toggle) Similar applications to Blake. Overhead pivot; reduces rubbing on crusher faces, reduces choking, allows higher speeds and therefore higher capacities. Energy efficiency higher because jaw and charge not lifted during cycle.

Overhead Eccentric (Single Toggle) Originally restricted to sampler sizes by structural limitations. Now in the same size of Blake which it has tended to supersede, because overhead eccentric encourages feed and discharge, allowing higher speeds and capacity, but with higher wear and more attrition breakage and slightly lower energy efficiency. In addition as compared to an equivalent double toggle, they are cheaper and take up less floor space.

Since the jaw crusher was pioneered by Eli Whitney Blake in the 2nd quarter of the 1800s, many have twisted the Patent and come up with other types of jaw crushers in hopes of crushing rocks and stones more effectively. Those other types of jaw crusher inventors having given birth to 3 groups:

Heavy-duty crushing applications of hard-to-break, high Work Index rocks do prefer double-toggle jaw crushers as they are heavier in fabrication. A double-toggle jaw crusher outweighs the single-toggle by a factor of 2X and well as costs more in capital for the same duty. To perform its trade-off evaluation, the engineering and design firm will analyze technical factors such as:

1. Proper selection of the jaws. 2. Proper feed gradation. 3. Controlled feed rate. 4. Sufficient feeder capacity and width. 5. Adequate crusher discharge area. 6. Discharge conveyor sized to convey maximum crusher capacity.

Although the image below is of a single-toggle, it illustrates the shims used to make minor setting changes are made to the crusher by adding or removing them in the small space between the crushers mainframe and the rea toggle block.

The jaw crusher discharge opening is the distance from the valley between corrugations on one jaw to the top of the mating corrugation on the other jaw. The crusher discharge opening governs the size of finished material produced by the crusher.

Crusher must be adjusted when empty and stopped. Never close crusher discharge opening to less than minimum opening. Closing crusher opening to less than recommended will reduce the capacity of crusher and cause premature failure of shaft and bearing assembly.

To compensate for wear on toggle plate, toggle seat, pitman toggle seat, and jaws additional shims must be inserted to maintain the same crusher opening. The setting adjustment system is designed to compensate for jaw plate wear and to change the CSS (closed side setting) of the jaw crusher. The setting adjustment system is built into the back frame end.

Here also the toggle is kept in place by a compression spring. Large CSS adjustments are made to the jaw crusher by modifying the length of the toggle. Again, shims allow for minor gap adjustments as they are inserted between the mainframe and the toggle block.

is done considering the maximum rock-lump or large stone expected to be crushed and also includes the TPH tonnage rate needing to be crushed. In sizing, we not that jaw crushers will only have around 75% availability and extra sizing should permit this downtime.

As a rule, the maximum stone-lump dimension need not exceed 80% of the jaw crushers gape. For intense, a 59 x 79 machine should not see rocks larger than 80 x 59/100 = 47 or 1.2 meters across. Miners being miners, it is a certainty during day-to-day operation, the crusher will see oversized ore but is should be fine and pass-thru if no bridging takes place.

It will be seen that the pitman (226) is suspended from an eccentric on the flywheel shaft and consequently moves up and down as the latter revolves, forcing the toggle plates outwards at each revolution. The seating (234) of the rear toggle plate (239) is fixed to the crusher frame; the bottom of the swing jaw (214) is therefore pushed forward each time the pitman rises, a tension rod (245) fitted with a spring (247) being used to bring it back as the pitman falls. Thus at each revolution of the flywheel the movable jaw crushes any lump of ore once against the stationary jaw (212) allowing it to fall as it swings back on the return half-stroke until eventually the pieces have been broken small enough to drop out. It follows that the size to which the ore is crushed.

The jaw crusher is not so efficient a machine as the gyratory crusher described in the next paragraph, the chief reason for this being that its crushing action is confined to the forward stroke of the jaw only, whereas the gyratory crusher does useful work during the whole of its revolution. In addition, the jaw crusher cannot be choke-fed, as can the other machine, with the result that it is difficult to keep it working at its full capacity that is, at maximum efficiency.

Tables 5 and 6 give particulars of different sizes of jaw crushers. The capacity figures are based on ore weighing 100 lb. per cubic foot; for a heavier ore, the figures should be increased in direct proportion to its weight in pounds per cubic foot.

The JAW crusher and the GYRATORY crusher have similarities that put them into the same class of crusher. They both have the same crushing speed, 100 to 200 R.P.M. They both break the ore by compression force. And lastly, they both are able to crush the same size of ore.

In spite of their similarities, each crusher design has its own limitations and advantages that differ from the other one. A Gyratory crusher can be fed from two sides and is able to handle ore that tends to slab. Its design allows a higher-speed motor with a higher reduction ratio between the motor and the crushing surface. This means a dollar saving in energy costs.

A Jaw crusher on the other hand requires an Ely wheel to store energy. The box frame construction of this type of crusher also allows it to handle tougher ore. This design restricts the feeding of the crusher to one side only.

The ore enters from the top and the swing jaw squeezes it against the stationary jaw until it breaks. The broken ore then falls through the crusher to be taken away by a conveyor that is under the crusher.Although the jaws do the work, the real heart of this crusher is the TOGGLE PLATES, the PITMAN, and the PLY WHEEL.

These jaw crushers are ideal forsmall properties and they are of the high capacity forced feed design.On this first Forced Feed Jaw Crusher, the mainframe and bumper are cast of special alloy iron and the initial cost is low. The frame is ribbed both vertically and horizontally to give maximum strength with minimum weight. The bumper is ruggedly constructed to withstand tremendous shock loads. Steel bumper can be furnished if desired. The side bearings are bronze; the bumper bearings are of the antifriction type.

This bearing arrangement adds both strength and ease of movement. The jaw plates and cheek plates are reversible and are of the best-grade manganese steel. The jaw opening is controlled by the position of an adjustable wedge block. The crusher is usually driven by a V-to-V belt drive, but it can be arranged for either V-to-flat or fiat belt drive. The 8x10 size utilizes a split frame and maybe packed for muleback transportation. Cast steel frames can be furnished to obtain maximum durability.

This second type of forced feed rock crusher is similar in design to the Type H listed above except for having a frame and bumper made of cast steel. This steel construction makes the unit lighter per unit of size and adds considerable strength. The bearings are all of the special design; they are bronze and will stand continuous service without any danger of failure. The jaw and cheek plates are manganese steel; and are completely reversible, thus adding to their wearing life. The jaw opening is controlled by the position of an adjustable wedge block. The crushers are usually driven by V-to-V but can be arranged for V-to-flat and belt drive. The 5x6 size and the 8x10 size can be made with sectionalized frame for muleback transportation. This crusher is ideal for strenuous conditions. Consider a multi jaw crusher.

Some jaw crushers are on-floor, some aboveground, and others underground. This in many countries, and crushing many kinds of ore. The Traylor Bulldog Jaw crusher has enjoyed world wide esteem as a hard-working, profit-producing, full-proof, and trouble-free breaker since the day of its introduction, nearly twenty years ago. To be modern and get the most out of your crushing dollars, youll need the Building breaker. Wed value the privilege of telling you why by letter, through our bulletins, or in person. Write us now today -for a Blake crusher with curved jaw plates that crush finer and step up production.

When a machine has such a reputation for excellence that buyers have confidence in its ability to justify its purchase, IT MUST BE GOOD! Take the Type G Traylor Jaw Crusher, for instance. The engineers and operators of many great mining companies know from satisfying experience that this machine delivers a full measure of service and yields extra profits. So they specify it in full confidence and the purchase is made without the usual reluctance to lay out good money for a new machine.

The success of the Type G Traylor Jaw Crusheris due to several characteristics. It is (1) STRONG almost to superfluity, being built of steel throughout; it is (2) FOOL-PROOF, being provided with our patented Safety Device which prevents breakage due to tramp iron or other causes of jamming; it is (3) ECONOMICAL to operate and maintain, being fitted with our well-known patented Bulldog Pitman and Toggle System, which saves power and wear by minimizing frictionpower that is employed to deliver increased production; it is (4) CONVENIENT to transport and erect in crowded or not easily accessible locations because it is sectionalized to meet highly restrictive conditions.

Whenever mining men need a crusher that is thoroughly reliable and big producer (which is of all time) they almost invariably think first of a Traylor Type G Jaw Crusher. By experience, they know that this machine has built into it the four essentials to satisfaction and profit- strength, foolproofness, economy, and convenience.

Maximum STRENGTH lies in the liberal design and the steel of which crushers parts are made-cast steel frame, Swing Jaw, Pitman Cap and Toggles, steel Shafts and Pitman rods and manganese steel Jaw Plates and Cheek Plates. FOOLPROOFNESS is provided by our patented and time-tested safety Device which prevents breakage due to packing or tramp iron. ECONOMY is assured by our well-known Bulldog Pitman and Toggle System, which saves power and wear by minimizing friction, the power that is used to deliver greater productivity. CONVENIENCE in transportation and erection in crowded or not easily accessible locations is planned for in advance by sectionalisation to meet any restrictive conditions.

Many of the worlds greatest mining companies have standardized upon the Traylor Type G Jaw Crusher. Most of them have reordered, some of them several times. What this crusher is doing for them in the way of earning extra dollars through increased production and lowered costs, it will do for you! Investigate it closely. The more closely you do, the better youll like it.

jaw crusher - an overview | sciencedirect topics

The mechanism of movement of rocks down the crusher chamber determines the capacity of jaw crushers. The movement can be visualised as a succession of wedges (jaw angles) that reduce the size of particles progressively by compression until the smaller particles pass through the crusher in a continuous procession. The capacity of a jaw crusher per unit time will therefore depend on the time taken for a particle to be crushed and dropped through each successive wedge until they are discharged through the bottom. The frequency of opening and closing of the jaws, therefore, exerts a significant action on capacity.

Following the above concepts, several workers, such as Hersam [6]. Gaudin [7], Taggart [8], Rose and English [9], Lynch [3], Broman [10], have attempted to establish mathematical models determining the capacity.

Although it is not truly applicable to hard rocks, for soft rocks it is reasonably acceptable [1]. This expression, therefore, is of limited use. The expressions derived by others are more appropriate and therefore are discussed and summarised here.

Rose and English [9] determined the capacity of a jaw crusher by considering the time taken and the distance travelled by the particles between the two plates after being subjected to repeat crushing forces between the jaws. Therefore, dry particles wedged between level A and level B (Figure4.4) would leave the crusher at the next reverse movement of the jaw. The maximum size of particle dropping out of the crusher (dMAX) will be determined by the maximum distance set at the bottom between the two plates (LMAX). The rate at which the crushed particles pass between the jaws would depend on the frequency of reversal of the moving jaw.

The distance, h, between A and B is equal to the distance the particle would fall during half a cycle of the crusher eccentric, provided the cycle frequency allows sufficient time for the particle to do so. If is the number of cycles per minute, then the time for one complete cycle is [60/] seconds and the time for half a cycle is [60/2]. Thus, h, the greatest distance through which the fragments would fall freely during this period, will be

Then for a fragmented particle to fall a distance h in the crusher, the frequency must be less than that given by Equation (4.10). The distance h can be expressed in terms of LMIN and LMAX, provided the angle between the jaws, , is known. From Figure4.4, it can be seen that

Rose and English [9] observed that with increasing frequency of the toggle movement the production increased up to a certain value but decreased with a further increase in frequency. During comparatively slower jaw movements and frequency, Rose and English derived the capacity, QS, as

Equation (4.12) indicates that the capacity, QS, is directly proportional to frequency. At faster movement of the jaws where the particle cannot fall the complete distance, h, during the half cycle, QF was found to be inversely proportional to frequency and could be expressed by the relation

The relationship between the frequency of operation and capacity of the jaw crusher can be seen in Figure4.5. This figure is plotted for values of LT=0.228m, W=1.2m, LMIN=0.10m, R=10, G=1 and the value of varied between 50 and 300rpm.

It should be noted that while considering the volume rates, no consideration was made to the change of bulk density of the material or the fractional voidage. However, during the crushing operation the bulk density of the ore changes as it passes down the crusher. The extent of the change depends on

PK is considered a size distribution function and is related to capacity by some function (PK). As the particles decrease in size, while being repeatedly crushed between the jaws, the amount of material discharged for a given set increases. Rose and English related this to the set opening and the mean size of the particles that were discharged. Defining this relation as it can be written as

The capacity is then dependant on some function which may be written as (). Equations (4.16) and (4.17) must, therefore, be incorporated into the capacity equation. Expressing capacity as mass of crusher product produced per unit time, capacity can be written as

The bulk density of the packing will depend on the particle size distribution. The relation between PK and (PK) and and () is shown in Figure4.6. It is based on a maximum possible bulk density of 40%.

As the closed set size must be less than the feed size, () may be taken as equal to 1 for all practical purposes. The maximum capacity of production can be theoretically achieved at the critical speed of oscillation of the moving jaw. The method of determining the critical speed and maximum capacity is described in Section4.2.3

The capacity of a jaw crusher is given by the amount of crushed material passing the discharge opening per unit time. This is dependent on the area of the discharge opening, the properties of the rock, moisture, crusher throw, speed, nip angle, method of feeding and the amount of size reduction.

In order to calculate the capacity of crushers, Taggart [8] considered the size reduction, R80, as the reduction ratio of the 80% passing size of the feed, F80, and product, P80. This may be written as

Hersam [6] showed that at a fixed set and throw, a decrease in feed size reduced the reduction ratio and increased the tonnage capacity. A fraction of the crusher feed is usually smaller than the minimum crusher opening at the discharge end (undersize) and, therefore, passes through the crusher without any size reduction. Thus, as the feed size decreases, the amount actually crushed becomes significantly less than the total feed. The crusher feed rate can increase to maintain the same crushing rate. Taggart expressed the relationship between crusher capacity and reduction ratio in terms of a reduction ton or tonne, QR defined as

The reduction tonnage term is dependent on the properties of the material crushed so that for a given reduction ratio, the crusher capacity will vary for different materials. Taggart attempted to compensate for this by introducing the comparative reduction tonne, QRC, which is related to the reduction tonne by the expression

The comparative reduction tonne is a standard for comparison and applies for the crushing conditions of uniform full capacity feeding of dry thick bedded medium-hard limestone where K=1. The factor K is determined for different conditions and is a function of the material crushability (kC), moisture content (kM) and crusher feeding conditions (kF). K is expressed as

To evaluate K, the relative crushability factor, kC, of common rocks was considered and is given in Table4.2. In the table, the crushability of limestone is considered standard and taken as equal to 1.

The moisture factor, kM, has little effect on primary crushing capacities in jaw crushers and could be neglected. However when clay is present or the moisture content is high (up to 6%) sticking of fine ores on the operating faces of the jaws is promoted and will reduce the production rate. The moisture effect is more marked during secondary crushing, where a higher proportion of fines are present in the feed.

The feed factor kF, applies to the manner in which the crusher is fed, for example, manually fed intermittently or continuously by a conveyor belt system. In the latter case, the rate of feeding is more uniform. The following values for factor kF are generally accepted:

The reduction ratio of the operation is estimated from screen analysis of the feed and product. Where a screen analysis is not available, a rough estimate can be obtained if the relation between the cumulative mass percent passing (or retained) for different size fractions is assumed to be linear (Figure4.7).

Figure4.7 is a linear plot of the scalped and unscalped ores. The superimposed data points of a crusher product indicate the fair assumption of a linear representation. In the figure, a is the cumulative size distribution of the unscalped feed ore (assumed linear) and b is the cumulative size distribution of the scalped ore. xS is the aperture of the scalping screen and d1 and d2 are the corresponding sizes of the scalped and unscalped feed at x cumulative mass percentage. Taking x equal to 20% (as we are required to estimate 80% that is passing through), it can be seen by simple geometry that the ratio of the 80% passing size of the scalped feed to the 80% passing size of the unscalped feed is given by

Run of mine granite is passed through a grizzly (45.7cm) prior to crushing. The ore is to be broken down in a jaw crusher to pass through a 11.5cm screen. The undersize is scalped before feeding to the jaw crusher. Assuming the maximum feed rate is maintained at 30t/h and the shapes of feed and product are the same and the crusher set is 10cm, estimate the size of jaw crusher required and the production rate.

Substituting values, assuming cubic-shaped particles where the shape factor=1.7, we haveF80=0.81.745.7+0.210=64.15cmandP80=0.81.711.5=15.64cmR80=64.1515.64=4.10HenceQRC=22.744.100.64=145.4t/h

For a jaw crusher the thickness of the largest particle should not normally exceed 8085% of the gape. Assuming in this case the largest particle to be crushed is 85% of the gape, then the gape of the crusher should be=45.7/0.85=53.6cm and for a shape factor of 1.7, the width should be=45.7 1.7=78cm.

From the data given by Taggart (Figure4.8), a crusher of gape 53.6cm would have a comparative reduction tonnage of 436 t/h. The corresponding crushing capacity would beQT=4360.644.10=68.1t/hand is thus capable of handling the desired capacity of 22.74 t/h.

To determine the capacity of jaw and gyratory crushers, Broman [10] divided the crusher chamber into different sections and determined the volume of each section in terms of the angle that the moving jaw subtended with the vertical. Broman suggested that the capacity per stroke crushed in each section would be a function of the top surface and the height of the section. Referring to Figure4.9, if is the angle of nip between the crusher jaws and LT and LMAX are the throw and open side setting, respectively, then

Michaelson [8] expressed the jaw crusher capacity in terms of the gravity flow of a theoretical ribbon of rock through the open set of the crusher times a constant, k. For a rock of SG 2.65, Michaelsons equation is given as

For a set of crusher sizes and set openings, the calculations obtained from the work of Rose and English and others can be compared with data from equipment manufacturers. Figure4.10 shows a plot of the results. Assuming a value of SC of 1.0, the calculations show an overestimation of the capacity recommended by the manufacturers. As Rose and English pointed out, the calculation of throughput is very dependent on the value of SC for the ore being crushed. The diagram also indicates that the calculations drop to within the installed plant data for values of SC below 1.0. Most other calculation methods tend to estimate higher throughputs than the manufacturers recommend; hence, the crusher manufacturers should always be consulted.

The Values Used in the Calculation were 2.6 SG, (PK)=0.65, ()=1.0 and SC=0.51.0 (R&E); k=0.4 (Hersam); k=0.3 (Michaelson); k=1.5 (Broman) and =275rpm. The Max and Min Lines Represent the Crushers Nominal Operating Capacity Range.

Jaw crushers are heavy-duty machines and hence must be robustly constructed. The main frame is often made from cast iron or steel, connected with tie-bolts. It is commonly made in sections so that it can be transported underground for installation. Modern jaw crushers may have a main frame of welded mild steel plate.

The jaws are usually constructed from cast steel and fitted with replaceable liners, made from manganese steel, or Ni-hard, a Ni-Cr alloyed cast iron. Apart from reducing wear, hard liners are essential to minimize crushing energy consumption by reducing the deformation of the surface at each contact point. The jaw plates are bolted in sections for simple removal or periodic reversal to equalize wear. Cheek plates are fitted to the sides of the crushing chamber to protect the main frame from wear. These are also made from hard alloy steel and have similar lives to the jaw plates. The jaw plates may be smooth, but are often corrugated, the latter being preferred for hard, abrasive ores. Patterns on the working surface of the crushing members also influence capacity, especially at small settings. The corrugated profile is claimed to perform compound crushing by compression, tension, and shearing. Conventional smooth crushing plates tend to perform crushing by compression only, though irregular particles under compression loading might still break in tension. Since rocks are around 10 times weaker in tension than compression, power consumption and wear costs should be lower with corrugated profiles. Regardless, some type of pattern is desirable for the jaw plate surface in a jaw crusher, partly to reduce the risk of undesired large flakes easily slipping through the straight opening, and partly to reduce the contact surface when crushing flaky blocks. In several installations, a slight wave shape has proved successful. The angle between the jaws is usually less than 26, as the use of a larger angle causes particle to slip (i.e., not be nipped), which reduces capacity and increases wear.

In order to overcome problems of choking near the discharge of the crusher, which is possible if fines are present in the feed, curved plates are sometimes used. The lower end of the swing jaw is concave, whereas the opposite lower half of the fixed jaw is convex. This allows a more gradual reduction in size as the material nears the exit, minimizing the chance of packing. Less wear is also reported on the jaw plates, since the material is distributed over a larger area.

The speed of jaw crushers varies inversely with the size, and usually lies in the range of 100350rpm. The main criterion in determining the optimum speed is that particles must be given sufficient time to move down the crusher throat into a new position before being nipped again.

The throw (maximum amplitude of swing of the jaw) is determined by the type of material being crushed and is usually adjusted by changing the eccentric. It varies from 1 to 7cm depending on the machine size, and is highest for tough, plastic material and lowest for hard, brittle ore. The greater the throw the less danger of choking, as material is removed more quickly. This is offset by the fact that a large throw tends to produce more fines, which inhibits arrested crushing. Large throws also impart higher working stresses to the machine.

In all crushers, provision must be made for avoiding damage that could result from uncrushable material entering the chamber. Many jaw crushers are protected from such tramp material (often metal objects) by a weak line of rivets on one of the toggle plates, although automatic trip-out devices are now common. Certain designs incorporate automatic overload protection based on hydraulic cylinders between the fixed jaw and the frame. In the event of excessive pressure caused by an overload, the jaw is allowed to open, normal gap conditions being reasserted after clearance of the blockage. This allows a full crusher to be started under load (Anon., 1981). The use of guard magnets to remove tramp metal ahead of the crusher is also common (Chapters 2 and 13Chapter 2Chapter 13).

Jaw crushers are supplied in sizes up to 1,600mm (gape)1,900mm (width). For coarse crushing application (closed set~300mm), capacities range up to ca. 1,200th1. However, Lewis et al. (1976) estimated that the economic advantage of using a jaw crusher over a gyratory diminishes at crushing rates above 545th1, and above 725th1 jaw crushers cannot compete.

In hardening and martempering conditions austenitic manganese steel was free from carbides both at the grain boundaries and in the grains. Hence, the crusher jaws produced with austenitic manganese in these conditions eradicated brittle failure experienced in locally produced crusher jaws.

Hardening followed by tempering precipitated carbide at the grain boundaries and in the grains instead of reducing the residual stress associated with hardening. The volume fraction of these carbides, however, increased with tempering temperature.

In martempering conditions austenitic manganese steel had better plastic flows due to a decrease in overall thermal gradient and reduction in residual stresses associated with heat-treatment operations. This gave a better combination of hardness and toughness than austenitic manganese steel in hardening conditions used for the production of imported crusher jaws.

Srikanth [7] used a jaw crusher to create37m coal dust particles. Coal samples were obtained from coal mines in addition to some samples from the same source as Thakur's samples. They used a Microtrac Standard Range Analyzer (SRA) and Small Particle Analyser (SPA), which measured projected area (and hence diameter) using laser scattering and diffraction, respectively. The data were combined and plotted on a RosinRammler graph (discussed in Chapter 8). Their main findings were as follows:

Higher rank coals produced more total dust (<15m) and respirable dust (<7m). Semianthracite coal produced 3.7 times more total dust and 4.2 times more respirable dust compared with high-volatile bituminous coal.

The RosinRammler graph distribution parameter, n, was also rank dependent. The value for n was 0.68, 0.84, 0.90, and 0.95 for semianthracite, low-volatile coal, high-volatile bituminous coal, and subbituminous coals, respectively. This is similar to findings by Thakur (refer to Chapter 8 in the book).

A material is crushed in a Blake jaw crusher such that the average size of particle is reduced from 50 mm to 10 mm with the consumption of energy of 13.0 kW/(kg/s). What would be the consumption of energy needed to crush the same material of average size 75 mm to an average size of 25 mm:

The size range involved by be considered as that for coarse crushing and, because Kick's law more closely relates the energy required to effect elastic deformation before fracture occurs, this would be taken as given the more reliable result.

In an investigation by the U.S. Bureau of Mines(14), in which a drop weight type of crusher was used, it was found that the increase in surface was directly proportional to the input of energy and that the rate of application of the load was an important factor.

This conclusion was substantiated in a more recent investigation of the power consumption in a size reduction process which is reported in three papers by Kwong et al.(15), Adams et al.(16) and Johnson etal.(17). A sample of material was crushed by placing it in a cavity in a steel mortar, placing a steel plunger over the sample and dropping a steel ball of known weight on the plunger over the sample from a measured height. Any bouncing of the ball was prevented by three soft aluminium cushion wires under the mortar, and these wires were calibrated so that the energy absorbed by the system could be determined from their deformation. Losses in the plunger and ball were assumed to be proportional to the energy absorbed by the wires, and the energy actually used for size reduction was then obtained as the difference between the energy of the ball on striking the plunger and the energy absorbed. Surfaces were measured by a water or air permeability method or by gas adsorption. The latter method gave a value approximately double that obtained from the former indicating that, in these experiments, the internal surface was approximately the same as the external surface. The experimental results showed that, provided the new surface did not exceed about 40 m2/kg, the new surface produced was directly proportional to the energy input. For a given energy input the new surface produced was independent of:

Between 30 and 50 per cent of the energy of the ball on impact was absorbed by the material, although no indication was obtained of how this was utilised. An extension of the range of the experiments, in which up to 120 m2 of new surface was produced per kilogram of material, showed that the linear relationship between energy and new surface no longer held rigidly. In further tests in which the crushing was effected slowly, using a hydraulic press, it was found, however, that the linear relationship still held for the larger increases in surface.

In order to determine the efficiency of the surface production process, tests were carried out with sodium chloride and it was found that 90 J was required to produce 1 m2 of new surface. As the theoretical value of the surface energy of sodium chloride is only 0.08 J/m2, the efficiency of the process is about 0.1 per cent. Zeleny and Piret(18) have reported calorimetric studies on the crushing of glass and quartz. It was found that a fairly constant energy was required of 77 J/m2 of new surface created, compared with a surface-energy value of less than 5 J/m2. In some cases over 50 per cent of the energy supplied was used to produce plastic deformation of the steel crusher surfaces.

The apparent efficiency of the size reduction operation depends on the type of equipment used. Thus, for instance, a ball mill is rather less efficient than a drop weight type of crusher because of the ineffective collisions that take place in the ball mill.

Further work(5) on the crushing of quartz showed that more surface was created per unit of energy with single particles than with a collection of particles. This appears to be attributable to the fact that the crushing strength of apparently identical particles may vary by a factor as large as 20, and it is necessary to provide a sufficient energy concentration to crush the strongest particle. Some recent developments, including research and mathematical modelling, are described by Prasher(6).

The main sources of RA are either from construction and ready mixed concrete sites, demolition sites or from roads. The demolition sites produce a heterogeneous material, whereas ready mixed concrete or prefabricated concrete plants produce a more homogeneous material. RAs are mainly produced in fixed crushing plant around big cities where CDWs are available. However, for roads and to reduce transportation cost, mobile crushing installations are used.

The materiel for RA manufacturing does not differ from that of producing NA in quarries. However, it should be more robust to resist wear, and it handles large blocks of up to 1m. The main difference is that RAs need the elimination of contaminants such as wood, joint sealants, plastics, and steel which should be removed with blast of air for light materials and electro-magnets for steel. The materials are first separated from other undesired materials then treated by washing and air to take out contamination. The quality and grading of aggregates depend on the choice of the crusher type.

Jaw crusher: The material is crushed between a fixed jaw and a mobile jaw. The feed is subjected to repeated pressure as it passes downwards and is progressively reduced in size until it is small enough to pass out of the crushing chamber. This crusher produces less fines but the aggregates have a more elongated form.

Hammer (impact) crusher: The feed is fragmented by kinetic energy introduced by a rotating mass (the rotor) which projects the material against a fixed surface causing it to shatter causing further particle size reduction. This crusher produces more rounded shape.

However, the gyratory crusher is sensitive to jamming if it is fed with a sticky or moist product loaded with fines. This inconvenience is less sensitive with a single-effect jaw crusher because mutual sliding of grinding surfaces promotes the release of a product that adheres to surfaces.

The profile of active surfaces could be curved and studied as a function of the product in a way to allow for work performed at a constant volume and, as a result, a higher reduction ratio that could reach 20. Inversely, at a given reduction ratio, effective streamlining could increase the capacity by 30%.

The theoretical work of Rose and English [11] to determine the capacity of jaw crushers is also applicable to gyratory crushers. According to Rose and English, Equation (5.4) can be used to determine the capacity, Q, of gyratory crushers:

Capacities of gyratory crushers of different sizes and operation variables are published by various manufacturers. The suppliers have their own specifications which should be consulted. As a typical example, gyratory crusher capacities of some crushers are shown in Tables5.5 and 5.6.

About 100g heavy metal contaminated construction and demolition (C&D) waste is weighed and preliminarily crushed by a jaw crusher. Then the crushed C&D waste is mixed well and reduced by quartering twice. After that, the sample is dried at 100C for 1h. An electromagnetic crusher is used as a fine crushing for about 46min. Crushed sample is placed in a polypropylene screw-cap plastic bottles for storage.

Teflon crucibles used for digestion should be soaked in 1:1 nitric acid for 12h, wash with distilled water, and dry for later use. Volumetric flasks should be soaked in 1:1 nitric acid for 12h and washed with distilled water.

Before digestion, 0.10000.3000g of C&D waste powder is accurately weighed and evenly spread on the bottom of Teflon crucibles. Then they are placed in oven and dried for 2h at 120C together till constant weight. Aqua regia (18mL) (hydrochloric acid:nitric acid=3:1) is added, and 2mL 40% hydrofluoric acid is added 10min later. The crucibles with lids on are placed on an electric heating plate at 180C and heated till the solid waste is dissolved. Then, 30mL deionized water is added and the heating should be continuously maintained till the solution is vaporized to 23mL. Transfer the liquid to a 25mL plastic volumetric flask after it is cooled down, in which the volumetric flask should be washed with 1% nitric acid solution three times. Add deionized water to a certain volume and filter through 0.22m membrane. Place the solution at 4C for analysis.

Various types of rock fracture occur at different loading rates. For example, rock destruction by a boring machine, a jaw or cone crusher, and a grinding roll machine are within the extent of low loading rates, often called quasistatic loading condition. On the contrary, rock fracture in percussive drilling and blasting happens under high loading rates, usually named dynamic loading condition. This chapter presents loading rate effects on rock strengths, rock fracture toughness, rock fragmentation, energy partitioning, and energy efficiency. Finally, some of engineering applications of loading rate effects are discussed.

nordberg c series jaw crushers - metso outotec

Nordberg C Series jaw crushers have proven to be reliable and productive in thousands of mining, quarrying, recycling and industrial applications with up to 11,000 jaw crusher installations since 1975.

The core of Nordberg C Series jaw crusher is a pinned and bolted, non-welded frame construction that provides excellent fatigue strength.All the frame components are casted using an alloy developed in-house especially for jaw crushers.

A larger feed opening increases material intake and ensures that the rocks enter the jaw crushers cavity without restrictions. A steeper nip angle decreases operating costs by reducing wear on jaw dies and speeds up material flow down in the cavity.

The stroke is amplified from top to bottom, leading it being longest in the bottom of the cavity. This increases the capacity as well as the reduction ratio, resulting in high production in all kinds of operations.

The jaw crushers can be upgraded with crusher automation that enable monitoring and adjusting the settings of a feeder, crusher, and conveyor remotely. This way the crusher can be controlled from a distance making it easier and yet safer to operate.

Based on long experience and comprehensive testing at customer sites, the critical areas of jaw crushers are protected against wear. The components and parts that require renewal from time to time are engineered to be easily accessible and replaceable when needed.

Nordberg C Series jaw crushers are customizable with options for any application. Safe flywheel and drive guards protect operators from moving objects. An optional integrated motor base allows installing the crusher drive motor directly to the back of the crusher.

Get the maximum potential out of your size reduction process to achieve improved crushing performance and lower cost per ton. By using our unique simulation software, our Chamber Optimization experts can design an optimized crushing chamber that matches the exact conditions under which you operate.

what is a jaw crusher? meka crushing equipment

In order to make use of the rocks or ores obtained through quarrying/explosion in the Mining and Construction sectors, the materials need to be crushed to reduce them to a smaller size. We call this process SIZE REDUCTION or CRUSHING.

1.) Obtaining the size or surface area required for the use of the ore or material 2.) Allowing ease of transportation and storage 3.) Separating the different minerals contained within the ore and to release them from one another 4.) Obtaining the size or surface area required for the enrichment stage.

All jaw crushers feature two jaws: one of which is fixed while the other moves. The working principle of jaw crushers is based on the reciprocating movement of the movable jaw that compresses and crushes the rock or ore between itself and the fixed jaw, as the material enters the zone between the jaws.

The moving jaw moves back and forward against the fixed jaw, and material fed from the top of the machine is compressed between the two, breaking it into smaller pieces. As the moving jaw moves away from the fixed jaw, the crushed material is discharged from the crusher at the bottom, with the size of the ejected material determined by the gap between the jaws.

1. Feed Chute 2. Drive Flywheel 3. V-belts 4. Electric motor 5. Motor Stand 6. Settings and Damping Group 7. Hydraulic Cylinder 8. Toggle Plate 9. Swing Jaw 10. Discharge 11. Fixed Jaw

G: Gape width, b: maximum feed size, This is generally desired to be between 80% and 90% of the inlet width L: Crushing area length Around double the gape width W: Crushing area width Varies between 1.3 and 3 times the gape width. Lmax (OSS): Far side jaw opening (OPEN SIDE SETTING) Lmin (CSS): Near-side jaw opening (CLOSED SIDE SETTING)

One of the most important parameters is the angle between the two jaws, which is referred to as the nip angle. The nip angle is the angle at which the material, that passes through the crusher inlet to be crushed between the jaws can be gripped by the jaws without slipping. This angle depends on the size, hardness and frangibility of the material. It cannot be selected as too large or too small. The nip angle in primary crushers is lower than in secondary crushers.

In single-toggle jaw crushers, the movable jaw is supported by the bearing on an eccentric shaft driven by the pitman to which it is attached. The pitman is supported by a toggle plate at the bottom of the moveable jaw. Toggle plate compressed between moveable jaw and main body. This mechanism ensures that any point on the moving jaw moves in an elliptical orbit. This mechanism makes a movement aka four bar linkage movement. Through this movement, the movable jaw applies both pressure and friction forces to the material to be crushed.

In double-toggle jaw crushers, the pitman is mounted on fixed non-eccentric shaft that situated at the top of the crusher. There are two toggle plates, one on the left and one on the right, are linked to the pitman that is hinged to the driven camshaft. The toggle plate on the left is linked to the jaw-supporting block, while the one on the right is linked to the main body.

A comparison of jaw crushers with the same capacity reveals that double-toggle jaw crushers are more expensive than ordinary jaw crushers. For this reason, mostly single-toggle jaw crushers are used in the aggregate sector, while double-toggle jaw crushers are used mostly for crushing very hard and highly abrasive materials.

jaw crushers - high quality and reliability from retsch

Retsch Jaw Crushers are used for the rapid, powerful crushing and pre-crushing of mediumhard, hard, brittle and tough materials. The variety of materials offered, their efficiency and safety make them ideal for sample preparation in laboratories and industrial plants.

Applications & Details Jaw crushers are always at the very front of the sample preparation chain, pre-crushing all hard and brittle materials. They are primarily used in laboratories and pilot plants under rough conditions but are also suitable for on-line quality control of raw materials. The jaw crushers are available in 8 different sizes: BB 50, BB 100, BB 200, BB 300 and the bigger models BB 250, BB 400, BB 500 and BB 600. Throughput and final fineness depend on the crusher type, selected gap width and breaking properties of the sample material. Feed sizes range from 40 mm to 350 mm, depending on the model. The main fields of application of jaw crushers are construction materials, mineralogy and metallurgy, ceramics and glass, materials research and environmental analysis. RETSCH Jaw Crushers are characterized by many unique details allowing for convenient and safe sample processing. Benefits at a glance (depending on model) High throughput, high degree of size reduction High final fineness (down to d90 <0.5 mm) Zero point adjustment for wear compensation Breaking jaws made of different materials No-rebound feed hopper Easy-to-clean crushing chamber Belleville spring washer provides overload protection Jaw Crusher technology RETSCH Jaw Crushers are robust and powerful forced-feed crushers. The feed material passes through the no-rebound hopper and enters the crushing chamber. Size reduction takes place in the wedgeshaped area between the fixed crushing arm and one moved by an eccentric drive shaft. The elliptical motion crushes the sample which then falls under gravity. As soon as the sample is smaller than the discharge gap width, it falls into a removable collector. The continuous gap width setting with scale resp. digital display ensure optimal size reduction in accordance with the set gap width value. Integral Belleville spring washer packages and a thermal overload protection switch protect the jaw crushers against overloading.

used jaw crushers for sale. metso equipment & more | machinio

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

Trustworthy Jaw Crusher Factory price with Diesel Engine 1. Introduction of Trustworthy Jaw Crusher Factory price with Diesel Engine Jaw crusher which is produced by our company is a high-performance, energy-savi...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

1.We are factory and be able to give you the lowest price than market one; 2.Our products have been exported to over 80 countries and widely used in global mining and construction industry; 3.we have a prof...

Factory Price Diesel engine jaw crusher for sale This small size PE series jaw crusher max. feeding size is 130-210mm, output size is 10-60mm, capacity is 1-20 tph. Mining crusher crushing materials including gra...

Small Portable gold crusher hot sale in Australia This small size PE series jaw crusher max. feeding size is 130-210mm, output size is 10-60mm, capacity is 1-20 tph. Mining crusher crushing materials including gr...

China Stone Cruser Equipment pe200 350 pe 250x400 Lab Jaw crusher for sale This small size PE series jaw crusher max. feeding size is 130-210mm, output size is 10-60mm, capacity is 1-20 tph. Mining crusher crushi...

This small size PE series jaw crusher max. feeding size is 130-210mm, output size is 10-60mm, capacity is 1-20 tph. Mining crusher crushing materials including granite, basalt, limestone, river stone, sandstone, ...

used mobile stone crusher for sale stone crusher hammer Product Description used mobile stone crusher for sale stone crusher hammer is mainly used for the processing of materials such as metallurgy, chemical indu...

Mobile crushing plant for sale in russia with cone Product Description Mobile crushing plant for sale in russia with cone is mainly used for the processing of materials such as metallurgy, chemical industry, buil...

Stone crusher plant layout diesel mobile stone crusher Product Description Stone crusher plant layout diesel mobile stone crusher is mainly used for the processing of materials such as metallurgy, chemical indust...

jaw crushers - mt baker mining and metals

Mt. Baker Mining and Metals jaw crushers are ready-to-run, right out of the crate. They are engineered for long life, with low energy consumption and durable, industrial-grade moving parts. Applications for use include:

Jaw crushers are the workhorse of the crushing industry for mining, construction, and demolition recycling. Mt. Baker Mining and Metals jaw crushers are industrial grade, continuous duty machines. They take large pieces of rock, ore, concrete, or other materials, and crush them down to smaller sizes, for further processing in a ball mill or hammer mill, or for use in ballast or fill applications.

We bought a turn-key ore processing system that included a hammer mill. The equipment did exactly what it was promoted to do and more. The combination of the jaw crusher with the hammer mill and shaker table did has good if not better than it was advertised by MBMM. I Read More

We have an MBMM 24 x 16 HD turnkey-scrap metal processor. We primarily process 6-8lb motor stators, smaller transformers and radiator ends to separate out the clean copper. We run this hard day after day and are very happy with how it performs and the on-going support from MBMM. This Read More

As a countertop fabricator, stone waste from the edges of the slabs is a constant headache and expense to deal with. We dispose of 5,000 lbs of cut-offs a day and the dumpster fees for disposal was getting out of hand. We purchased a crusher system from MBMM and have Read More

This customer reports they process mostlyPC boards populated with components and sell the concentrated mix of copper, base metals and precious metals to a copper refinery in Poland. Read More

The crusher (16 x 24 Jaw Crusher Module) is great! I probably have 300 hours on it and we are in the process of swapping around jaw plates. I am very impressed with your product and would have no hesitation in recommending you guys. Read More

jaw crushers

The RockSizer / StoneSizer up-thrust single toggle design has specific features that benefit the user with lower manganese wear rates and power consumption per tonne of material crushed with improved product shape whilst maintaining higher outputs than old double-toggle style designs. The ten standard models in the RockSizer / StoneSizer range cover output capacities from 5tph to over 200tph.

The RockSledger down-thrust single toggle design provides a more aggressive crushing motion and subsequently higher capacities are achieved. Six standard models in the RockSledger range provide outputs from 70tph to over 850tph and are at the core of the designs used by Parker in their ranges of static, transportable and mobile jaw crushing plants.

RockSizer primary stage jaw crushers feature the upthrust toggle action which is also common to the StoneSizer range. Developed by Parker, this gives a slight downward movement to the swing jaw that promotes a forced feed and therefore increased output while at the same time minimising any rubbing action resulting in a well shaped product and reduced and even wear on the crushing jaws.

The RockRanger has a wide discharge conveyor with good clearance under the crusher. Installation is rapid and easy to set up. The feed hopper is an externally reinforced heavy-duty steel plate hopper to stand up to the toughest of jobs.

Mounted on a robust, semi-trailer chassis, a Parker RockSizer or RockSledger primary jaw is combined with a matched, high strength feeder/grizzly and integral product conveyor to give owners portable primary crushing at its best.

A fully mobile primary crushing plant complete with a Parker Rocksizer or RockSledger single toggle Jaw crusher, built around a strong straight beam chassis with standard supports for feed section, crusher, power unit and conveyor frame. The chassis is complete with access/maintenance platforms to the crusher and power unit and a main operator platform overlooks all stages of operation.

Robust fabricated chassis with all necessary operator platforms and access ladders. (the running gear for the RE1180 is quad-axle bogie and the RE1165 is a standard tri-axle bogie). Operating jacks are as standard for levelling the machine.

RockSizer (single toggle up-thrust) or RockSledger (single toggle down-thrust) design. Heavy duty reinforced fabricated welded steel plate body. High grade steel eccentric shaft. Hydraulically adjusted jaw settings.

Legal Terms & Conditions | Website Privacy Policy +44 (0) 116 266 5999 Canon Street, Leicester, Leicestershire, LE4 6GH, UK Registered in England and Wales (Company No. 4908756) Copyright Parker Plant Limited, 2020 all rights reserved. The winged logo is a registered trademark of Parker Plant Limited

what is a jaw crusher | advantages, types, parts and specifications | quarrying & aggregates

The series of jaw crushers produced by Rayco are widely used in mining and aggregate crushing industries. They are specially developed for crushing the hardest ores and rocks, and are mainly used as primary crushers.

When working, the motor drives the belt and pulley to move the movable jaw up and down through the eccentric shaft. When the movable jaw rises, the angle between the toggle plate and the movable jaw becomes larger, thereby pushing the movable jaw plate closer to the fixed jaw plate, and the material passes through the two jaws. The squeezing and rolling between the plates realize multiple crushing.

When the movable jaw descends, the angle between the toggle plate and the movable jaw becomes smaller. The movable jaw plate leaves the fixed jaw plate under the action of the pull rod and the spring, and the crushed material passes through the discharge port in the lower jaw cavity freely under the action of gravity Unload.

When crushing high hardness and strong corrosive materials, C6X can accomplish the task very well. Its equipment structure, manufacturing technology and material selection determine the high strength of its body. Not only can it be used for coarse crushing of the hardest rocks and ore, but also can be continuously produced in the most demanding production environment on the ground and underground to ensure the maximum production efficiency of customers.

jaw crusher - eastman rock crusher

Jaw crusher is a compression style rock crusher, useful in crushing the medium-hard to very hard material into a smaller particle size at primary crushing stage in the crushing circuit.Applicationsmining, quarry, construction waste recycling, aggregate making, etc.MaterialsLimestone, cobblestone, cobblestone, quartz, basalt, iron ore, granite, shale, sandstone, gypsum, and a variety of ores.

Eastman provides you with complete rock crushers and full list of components, original jaw crusher parts, form and function are a perfect fit.If your equipment breaks down, the productivity of the whole factory will be threatened. Critical wear parts are shipped with the goods to ensure they are available when you need them and to reduce maintenance time.Wear parts:

nordberg c96 jaw crusher - metso outotec

Nordberg C96 jaw crusher is a compact primary crusher engineered to perform for a long time. It is designed to be reliable and simple to operate. Assembled from convenient sized pieces, Nordberg C96 jaw crusher is easily dismantled for transport and reassembled if required.

Nordberg C96 jaw crusher shares many of the same features as other jaw crusher models in the Nordberg C Series. Crusher height gives a steep cavity cross-section, and the nip angle high up in the cavity, together with an aggressive well-aligned stroke at the bottom, ensure high throughput capacity and reduction.

Protection plates behind the jaw dies and replaceable toe wedges are standard features. Composite guards are lighter and durable making them faster and easier to handle. In addition, lifting tools for jaw dies, cheek plates, and toggle plate are also part of the standard scope for Nordberg C96 jaw crusher.

Active Setting Control (ASC) system is an optional accessory for Nordberg C96 jaw crusher. This advanced system automatically adjusts the crusher settings in a way that uncrushable objects exit the cavity before causing blockages or inefficiencies. Active Setting Control enables continuous crushing and protects Nordberg C96 from extreme overloads.

jaw crushers for sale

The jaw crushers we offer for sale include Superior, Type B Blake, Fine-Reduction, and Dodge sizes, 4 by 6 to 84 by 66 inches. A reciprocating machine, the crushes material in a straight line between jaws without grinding or rubbing surfaces.

As you compare this jaw crusher feature for feature with other makes youll see how this modern crusher lowers principal costspower consumption; lubrication; jaw plate, toggle plate, and bearing wear youll understand why we say the crusher promises you a new low cost per ton of material crushed!

Firstthose who have rock or ore tougher and more abrasive than most material. Secondthe operators whove had difficulty with other designs of crushers. And finallythe operators who naturally buy the bestexpecting their added investment to be written off in comparatively short time through lower operating and maintenance costs!

Compare the dimensions with those of conventional jaw crushers. It measures up to 20% longer; has up to 35% deeper crushing chamber! And while you naturally expect to pay more for this bigger,deluxe crusher, it follows that you get more too! For example:

You get a crushing chamber with a full-width receiving opening increased capacity! You get an acute crushing chamber that minimizes slippage very important with hard, tough materials. You cut down crushing power required through longer pitman and front toggle. You reduce packing, get closer setting through the longer jaw, non-choking plates. You lower maintenance cost, get longer jaw plate, toggle, and bearing life through lower structural stresses, simplified design.

Frames of these crushers are built for maximum rigidity designed to prevent distortion during operation. Side members are heavy steel plate, reinforced by steel ribbing. End members are cast steel, of box section design, to provide maximum strength.

The side frames are deep-welded and then stress-relieved in thehuge annealing furnaces to eliminate possible failure adjacent to welds. The result is a uniformly strong frame that will remain true during the long service life of the crusher.

A jaw crusher frames are of sectionalized construction to facilitate handling. This design minimizes heavy lifts makes the crusher suitable for installations where parts must be passed down a shaft or through a tunnel. End members are attached between side members with vertical tongue and groove joints and held together with fitted bolts. Long-bearing surfaces prevent angular distortion.

Important differences in design show up visually when a cross-section of the crushing chamber of a conventional crusher is superimposed over that of the crusher. Now you can see the advantages of the 1 /3 deeper chamber using non-choking jaw plates. Its more acute crushing angle is carried to the very top of the chamberpermits nipping the largest material that can enter the receiving opening!

Lower plates on the swing and stationary jaws are suspended from projections on jaws. These plates also support the upper plates. This exclusive feature permits the free expansion of manganese steel jaw plates greatly minimizes the possibility of buckling or warping prevents costly shutdowns!

SWING AND STATIONARY JAWS on the jaw crusher are annealed cast steel box section construction designed for maximum rigidity. The jaw swings on a sturdy shaft that is clamped to the crusher frame. This shaft also serves as a reinforcing tie across the top of the frame. The entire design facilitates lubrication and replacement of shaft bearings.

Jaw plates are constructed of manganese steel and have corrugated crushing surfaces which reduce the power required for fracturing material. The jaw plates are built into two pieces to jaw. Those on the swing jaw are interchangeable. Plates on the stationary jaw are the non-choking type, not interchangeable. Lower plates on both jaws are suspended from jaw projections and support upper plates. The main advantage of this construction (see above) is to permit the free flow of manganese steel. All four plates are held in place by large through-bolts equipped with springs to prevent bolt breakage.

Heres still another feature youll find on the jaw crusher! Renewable wearing plates between the cast manganese steel jaw plates and swing and stationary jaws provide a firm backing for the jaw plates. If, for any reason, looseness develops in the jaw plates, these wearing plates, not the jaws, take the wear! By protecting expensive jaw castings, these wearing plates increase crusher life simplify maintenance minimize causes for shutdowns.

The heavy, two-piece corrugated manganese steel jaw plate is designed to fracture the toughest kinds of rock or ore with a minimum of power. The unobstructed clearances above, between, and below the plate sections permit free flow of manganese steel.

This construction eliminates the need for extra holding pieces, greatly minimizes the shearing of bolts. The amply designed shaft not only supports the swing jaw but reinforces the frame, serving as a tie between sides.

Notice the extra length of this jaw as compared to conventional types. Designed up to one-third longer, it exerts greater pressures in the upper portion of the crushing chamber, distributes crushing action more evenly. The result is a gradual reduction of ore to the choking point, and increased capacity!

Another, southern iron ore mining company, chose this 48 by 42-inch crusher to replace a conventional design that had failed. They explained, In our process, weve got to have a ruggedly designed crusher capable of continuous operation!

CRUSHERSin sizes from 36 by 25 to 60 by 48 inchesare giving these and other operators more for their money more capacity; more crusher life; more satisfaction! It can pay you too, to know more about this great crusher! Why not call in your use today!

All sizes of crushers feature a three-piece toggle plate construction. Worn ends may be replaced no need to discard the entire toggle. Bronze toggle ends fit into replaceable hardened steel toggle seats in swing jaw. Properly lubricated, this assembly materially reduces maintenance.

Toggle plates for these jaw crushers are of three-piece construction, consisting of an iron center section (2) to which are bolted two replaceable bronze ends (1 and 3). Toggle seats are carefully machined and equipped with protecting shields that deflect dust and dirt.

A toggle block, arranged for both vertical and horizontal adjustment, is provided at the rear of the frame. By inserting shims above the toggle block, the crushing stroke can be adjusted. Insertion of shims behind the toggle block adjusts the size of the discharge opening. Parallel alignment is assured and unnecessary strain in the crushing machine is avoided.

The pitman in any jaw crusher is essentially a tension member. However, because it also has a vertical reciprocating movement, it is desirable to keep its weight as low as possible, consistent with maintaining the required strength.

In the crusher this is accomplished by designing the pitman as a skeleton member, first to provide the necessary strength for tension and with stiffness against overturning thrust provided for by deep integral webs.

The pitman is designed with only four large-cap bolts, and the pitman cap is ribbed for proper distribution of the load to these bolts. The pitman is swung on the eccentric shaft which is supported by removable, water-cooled bearings on the frame.

The pitman is a two-piece annealed cast steel construction, with a cap designed for water cooling. Bearing surfaces on both pitman and cap are babbitted and are joined together by four large forged steel bolts. The elimination of excess bolts inherently found in conventional design results in a more uniform distribution of load.

The pitman (eccentric) shaft is heat-treated, forged steel constructionof ample diameter so that stress, even under the shock of suddenly clogged jaws, is low. The shaft is carried in removable, water-cooled, babbitted bearings designed to permit quick removal or replacement without having to strip the crusher.

Heres a typical toggle plate for jaw crushers. It is constructed in three pieceswith the center section of iron, two ends of bronze, designed for quick bolting to the center section. This unique construction materially reduces replacement and maintenance costs makes it unnecessary to discard toggles when ends alone are worn!

A critical point in the operation of large jaw crushers is the arrangement of the swing jaw and its supporting shaft. While in most crushers the jaw is pressed on the shaft and the latter swings in frame, in the jaw crusher the opposite principle is usedshaft is clamped in frame and jaw swings on the shaft!

Another point has been lubrication. In operation, the actual movement of the swing jaw is relatively small. The result is difficulty in proper lubrication of bearing surfaces. The crusher uses a special means of lubrication and in addition is designed with the new replaceable, graphite-impregnated Scor-proof bushings which greatly reduce wear on the expensive shaftssince these bushings, and not the shaft, now take the wear!

Very careful attention is required in the lubrication of heavy mechanical units like the jaw crusher. A thorough study made of existing types of lubrication systems resulted in the selection of a pair of systems that assure positive delivery of lubricant to point of maximum pressure.

The 48 by 42-inch jaw crusher and smaller sizes are force-fed by an automatic high-pressure lubricator to the swing jaw, pitman, and main bearings as illustrated in Figure 1. A motor-driven pump forces the lubricant through pressure buildup cylinders and out to distributors which dispense a precise amount to each of the points on the bearings. No oil return is provided.

The 60 by 48-inch jaw crusher and larger sizes are lubricated by a closed circuit oiling system to the pitman and main bearings, as illustrated by the solid lines in Figure 2, and by high-pressure lubrication fittings connected to the swing jaw bearings, as illustrated by the dotted lines in Figure 2. A motor-driven gear pump forces the oil through pressure-type filters and a condenser-type cooler to a distribution manifold mounted on the crusher. The oil flows through the bearings, lubricating and cooling, and back to the reservoir for recirculation. The swing jaw bearings require servicing by portable grease equipment.

The capacity of the jaw crusher is greater than that of conventional jaw crushers. One reason is its uniform-wear crushing chamber with full-width receiving opening. Another reasonits a more acute crushing angle.

Slippage is reduced packing and choking are prevented by a more even distribution of crushing action throughout the entire length of the crushing chamber. The result is a gradual reduction of material to the choking point increased capacity!

Capacities given below are approximate and are based on standard speeds, jaw motions, and jaw plates, with a feed of quarry or mine run material weighing 100 lb per cu ft crushed. Most stone and low-grade ores are considered weighing 100 lb per cu ft crushed.

The table is based on continuous feeding. Reserve for normal interruption of feeding should be provided. A heavy-duty apron feeder is recommended for most installations, particularly where large cars or trucks are used in the quarry or mine.

When feed to crushers is scalped over grizzlies or screens the number of rejections, or material that will have to be crushed should be determined in establishing the tonnage to be handled by the crusher. The number of fines received from mine or quarry will vary widely depending on each application and should be taken into consideration in determining the overall capacity.

Whatever equipment you operate, you can be certain of careful, considerate handling of orders for repair or replacement parts. In most cases parts are shipped directly from stockyoure assured of fast delivery. The view at left shows a small portion of crushing, cement, and mining equipment parts normally carries.

Repair parts temporarily depleted or not carried in stock will be furnished in time to meet requirements whenever possible. Anticipation of future needs, placing orders in advance, will greatly aid in avoiding unforeseen delays. Genuine parts are exact duplicates or improvements of original components of your machinery, not makeshift substitutes.

nordberg c106 jaw crusher | pilot crushtec

Nordberg C106 jaw crusher is a compact primary crusher engineered to perform for a long time. It is designed to be reliable and simple to operate. Assembled from convenient sized pieces, Nordberg C106 jaw crusher is easily dismantled for transport and reassembled if required. Nordberg C106 jaw crusher shares many of the same features as other jaw crusher models in the Nordberg C Series. Crusher height gives a steep cavity cross-section, and the nip angle high up in the cavity, together with an aggressive well-aligned stroke at the bottom, ensure high throughput capacity and reduction.

Nordberg C106 jaw crusher is a compact primary crusher engineered to perform for a long time. It is designed to be reliable and simple to operate. Assembled from convenient sized pieces, Nordberg C106 jaw crusher is easily dismantled for transport and reassembled if required. Nordberg C106 jaw crusher shares many of the same features as other jaw crusher models in the Nordberg C Series. Crusher height gives a steep cavity cross-section, and the nip angle high up in the cavity, together with an aggressive well-aligned stroke at the bottom, ensure high throughput capacity and reduction.

Due to convenient features and special tools Nordberg C106 jaw crusher is simple and quick to maintain. The protection plates behind the jaw dies and replaceable toe wedges are standard features. In addition, lifting tools for jaw dies, cheek plates, and toggle plate are also part of the standard scope for Nordberg C106 jaw crusher.

Active Setting Control (ASC) system is an optional accessory for Nordberg C106 jaw crusher. This advanced system automatically adjusts the crusher settings in a way that uncrushable objects exit the cavity before causing blockages or inefficiencies. Active Setting Control enables continuous crushing and protects Nordberg C106 from extreme overloads. With Active Setting Control, Nordberg C106 is especially well equipped for applications that otherwise might be challenging for conventional jaw crushers.

Nordberg C106 jaw crusher is an all-round crushing machine well equipped to serve in stationary and mobile applications both on the ground and underground. Generally used as a primary crusher, Nordberg C106 jaw crusher can also be utilized in later stages of the size reduction process

Pilot Crushtec International (Pty) Ltd is South Africas leading supplier of mobile and semi-mobile crushing, screening, recycling, sand washing, stockpiling, compacting and material handling solutions. Our product range includes jaw crushers, cone crushers, vertical shaft impact (VSI) crushers, impact crushers, screens and conveyors.

jaw crusher - turn waste concrete into sand

Doyou want to turn construction waste into treasure? Doyou want to crushlimestone, river pebble, granite, basalt, and quartz stone into small particle?Do you want to get economic benefits from these stones?Then it is high timethat youchoose a jaw crusher! As a matter of fact, it is widely used to crush ore and large pieces of material in mining smelting, building material, road, railway, water conservancy and chemical industry. Brcauseit has so many applications, it is also called universal crusher.

The jaw crusher plant, which is researched and designed by Aimix Group, has combined with domestic and foreign advanced technology. Our crushers adopt deep crushing cavity, so the feeding rate and crushing efficiency can be greatly improved. It is also energy-saving. Compared with other crusher,it can save more than 50% energy. Jaw crushing plant has advanced technology, long service life, reliable working condition, easy maintenance and other advantages.

As a leader of mining machinery, this kind of crusher can process almost all the rocks and minerals, such as: basalt, pebble, iron ore, limestone, granite, quartz stone, shale, gravel, river pebble, bluestone, gypsum, construction waste, building aggregates, etc. In other words, it can turns all types of stones into useful materials.

Firstly, You should consider the size of raw materials and the required size of the finished materials. If the materials have big size, you can choose the ordinary crusher machine(PE series). Because itis the primary crushing equipment and suitable for crushing large stone materials. On the contrary, you should choose Aimixs secondary jaw crusher or other kind of fine crusher machines in order to crush smaller materials.

Secondly, you should consider the machines performance. Aimix, a reliable crusher supplier, adopts advanced technology to manufacture all kinds of crushers. Accordingly, our crushers have simple structure, easy maintenance, stable performance and low operation cost. So you can choose our crusher machines without hesitation.

Lastly, jaw crusher price is a very crucial factor. In addition, we can recommend suitable machines to different customers according to their budgets and requirements. We ensure that all customers will get best crusher with the most reasonable price.

On the basis of actual situation, the most popular types are PE series, PEX series and HD Germany series. Each type contains several models. For example, PE series mainly contains 18 models. The smallest model is PE 150*250, and the biggest machine is PE 1600*2100. PEX series mainly consists of 5 models. Besides, HD series is a kind of German version crusher. Aimix mainly manufactures and exports 4 models of HD crusher- HD80, HD98, HD110, HD125.

The main specifications of this kind of crusher machinesare PE series crushers, PEX series crushers and HD series crushers. PE crushers are mainly used in primary crushing stage. However, PEX crushers mainly work in secondary or third crushing stage.

PEcrusheris the most common kind of crusher machine.It consists ofPE150*250, PE250*450, PE1200*1500, and so on. In orderto satisfy different demands, thecrusher havea large range of inputsize and outputsize. You can adjust the size according to the requirements of theraw material and thefinished product. The inputsizes are from 125mm to 1020mm. Moreover, each type of inputsize can be adjusted from 10mm to 300mm.For example, the large input size of PE150*250is 125mm, and you can adjust the input size from 10mm to 40mm based on 125mm. The things you need to do are putting the materials into the crushers and adjusting the size you want.

PEX series mainly consists of five models: PEX 150*750, PEX 250*750, PEX 250*1000, PEX 250*1200, and PEX 300*1300. Besides, HD Germany crushers are also a main type of concrete jaw crusher for sale. And there are four types of HD crushers. They are mainly used to crusher hard materials. Compared to other crushers, it has larger production and higher quality finished products.

There are several main parts of jaw crusher: frame, jaw plate and side guard plate, and transmission part. The frame is a four-walled rigid frame, and it is used to hold the eccentric shaft and stand the reactive force of crushed material. So, the frame needs sufficient strength and rigidity. It is usually made of cast steel. The frame of mini jaw crusher for sale can be made of high quality cast iron instead of cast steel. The frame ofthe crushrneeds to be cast in sections and bolted firmly into a whole, and the casting process is complicated. The frame of self-made small jaw crushmachinecan be welded with thick steel plate, but the stiffness is poor.

Both the fixed jaw plate and the mobile jaw plate are composed of jaw beds and jaw plates. The jaw plates are fixed on the jaw bed with bolts and wedge screws. Jaw bed of fixed jaw plate is the front wall of the frame. Jaw bed of mobile crusher jaw plate must have sufficient strength and stiffness to stand the broken reactive force, and thus most mobile jaw plates are made of cast steel or cast iron pieces.

The eccentric shaft is the main shaft of the crusher, which is made of high carbon steel. The eccentric parts must be precision-machined and heat-treated. One end of the eccentric shaft is a pulley, and the other end is a flywheel.

When the rock crushing machine works, motor drives belt and pulley, and the eccentric shaft drives the mobile jaw plate. When the mobile jaw plate rises, the angle between elbow plate and mobile jaw plate becomes larger. So the mobile jaw plate will be close to the fixed jaw plate. At the same time, materials can be crushed. When the mobile jaw plate down, the angle between elbow plate and the movable jaw becomes small. And under the effect of rod and spring, the mobile jaw plate will be far from the fixed jaw plate. Meanwhile, broken material will be discharged.

Crushing chamber (working chamber) is composed of a fixed jaw plate and a mobile jaw plate. The mobile jaw plate is periodically reciprocated against the fixed jaw plate, sometimes separated, and sometimes closed. When they are separated, the material enters the crushing chamber and the finished product is discharged from the lower part. When they are closed, the material between the two jaw plates is crushed by crushing, bending and splitting.

2. This kind of crushercan not only crush small size materials, but also crush large pieces of limestone. And the largest broken particle size is 1000 * 1200mm. In current mining industry, limestone is in short supply and many ordinary crushers can not crush large size limestone. And itcan crush large limestone into small particles, so you can get more crushed limestone by using ourcrusher.

However, different jaw crusher manufacturers have different prices. So we suggest that you buy crusher machinefrom professional manufacturers. Aimix Group, a professional crusher exporter, can produce all kinds of crushers, such as hydraulic crusher, no grinding crusher, impactor crusher, direct drive crusher, double chamber crusher, cone crusher machine, and track mounted jaw crusher. Aimixs equipments not only have high quality, but also have cheap price. Our equipments are directly sold by factory, so you can get more discounts from our factory!

All kinds ofcrusherscan be customized according to the actual needs of users. If you want to buy, please send us an email and we will provide you high quality equipment and professional service. Please feel free to give your inquiry in the form below. We will reply in 24 hours.

small jaw crusher for sale - low cost of mini jaw crusher

Small jaw crusher for sale is mainly used for the medium-size crushing of various ores and bulk materials. It can crush materials with a compressive strength of not more than 320Mpa, and there are two types crushing methods: coarse crushing and fine crushing. This series of small jaw crushers has complete specifications for your reference, and its feed size is 125mm~750mm, which makes it the first choice for primary crushing.

If you need to process small pebbles and stones, you need to be equipped with a fine crusher. The processed finished products have characteristics of uniform particle size, high content of three-dimensional finished products, and high sales of finished products, which can meet the high-standard material requirements in the construction field.

If you are a beginner and do not know about mini jaw crusher, tell us your raw material characteristics, finished product requirements, site conditions, production budget, hourly production, and other requirements, we have professional engineers to equip you with a suitable model at a reasonable price. Next, lets see the types of jaw crushers we can supply.

1. The jaw crusher mini adopts a V-shaped crushing cavity design, the optimized configuration of the crushing cavity structure and moving jaw motion trajectory parameters, and a large stroke maximizes the feed size, output, and crushing ratio.

3. The elastic limit block and rubber damping device are used to replace the original rigid foot connection, which can effectively absorb the shock peak load, thereby reducing the mutual impact between the crusher and the foundation and increasing the service life of the equipment.

When the mini jaw crusher machine is working, the motor drives the eccentric shaft to rotate through the belt pulley, so that the movable jaw periodically approaches and leaves the fixed jaw, thereby squeezing, rubbing, and crushing the material, making the material from large to small, gradually decreasing, Until it is discharged from the discharge port.

Compared with the traditional PE series, the 6CX series mini jaw crusher for sale has fundamentally changed the crushing cavity, material, bearing standards, and manufacturing process. Its structure is stronger, the reliability is higher, the output is increased by more than 30%, and the unit operating cost is reduced by 20 %. This series of small jaw crushers can be widely used in all kinds of hardest and highly abrasive rocks. They are ideal products for mine crushing operations and stone processing and production.

Pre-sales service: According to your requirements, tailor-made solutions, project managers one-to-one service, factory and workshop-visiting, spot supply, free test equipment with materials, and inspection site nearby.On-sale service: delivery on time, guide the installation, and guide the test equipment on-site, until the normal production and operation.

After-sales service: Provide customers with remote assistance services at any time. If it cannot be solved, a professional engineer can be assigned to the site to solve after-sales problems. It will arrive at the scene within one day in China and within one week in foreign countries. The small size jaw crusher is guaranteed for one year and repair for life.

As for the price, we cant show you the accurate price, because we are dealing with customers from all over the world, and there are many factors that affect the price. If you want to know the small jaw crusher price, you can leave us a message on this page, we have a professional salesman and engineer to give you an explanation.

As a professional small jaw crusher manufacturer in Henan, AIMIX strictly controls every small jaw crusher machine for sale, with more reliable quality, old brand, and fairer prices. Come to the factory for discounts and other services, and AIMIX will fully understand the needs of users to ensure that we can provide you bring higher returns. What are you waiting for? Contact us now!