materials in ball mills

ball mill - an overview | sciencedirect topics

The ball mill accepts the SAG or AG mill product. Ball mills give a controlled final grind and produce flotation feed of a uniform size. Ball mills tumble iron or steel balls with the ore. The balls are initially 510 cm diameter but gradually wear away as grinding of the ore proceeds. The feed to ball mills (dry basis) is typically 75 vol.-% ore and 25% steel.

The ball mill is operated in closed circuit with a particle-size measurement device and size-control cyclones. The cyclones send correct-size material on to flotation and direct oversize material back to the ball mill for further grinding.

Grinding elements in ball mills travel at different velocities. Therefore, collision force, direction and kinetic energy between two or more elements vary greatly within the ball charge. Frictional wear or rubbing forces act on the particles, as well as collision energy. These forces are derived from the rotational motion of the balls and movement of particles within the mill and contact zones of colliding balls.

By rotation of the mill body, due to friction between mill wall and balls, the latter rise in the direction of rotation till a helix angle does not exceed the angle of repose, whereupon, the balls roll down. Increasing of rotation rate leads to growth of the centrifugal force and the helix angle increases, correspondingly, till the component of weight strength of balls become larger than the centrifugal force. From this moment the balls are beginning to fall down, describing during falling certain parabolic curves (Figure 2.7). With the further increase of rotation rate, the centrifugal force may become so large that balls will turn together with the mill body without falling down. The critical speed n (rpm) when the balls are attached to the wall due to centrifugation:

where Dm is the mill diameter in meters. The optimum rotational speed is usually set at 6580% of the critical speed. These data are approximate and may not be valid for metal particles that tend to agglomerate by welding.

The degree of filling the mill with balls also influences productivity of the mill and milling efficiency. With excessive filling, the rising balls collide with falling ones. Generally, filling the mill by balls must not exceed 3035% of its volume.

The mill productivity also depends on many other factors: physical-chemical properties of feed material, filling of the mill by balls and their sizes, armor surface shape, speed of rotation, milling fineness and timely moving off of ground product.

where b.ap is the apparent density of the balls; l is the degree of filling of the mill by balls; n is revolutions per minute; 1, and 2 are coefficients of efficiency of electric engine and drive, respectively.

A feature of ball mills is their high specific energy consumption; a mill filled with balls, working idle, consumes approximately as much energy as at full-scale capacity, i.e. during grinding of material. Therefore, it is most disadvantageous to use a ball mill at less than full capacity.

The ball mill is a tumbling mill that uses steel balls as the grinding media. The length of the cylindrical shell is usually 11.5 times the shell diameter (Figure 8.11). The feed can be dry, with less than 3% moisture to minimize ball coating, or slurry containing 2040% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, AG mills, or SAG mills.

Ball mills are filled up to 40% with steel balls (with 3080mm diameter), which effectively grind the ore. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture.

When hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. As mentioned earlier, pebble mills are widely used in the North American taconite iron ore operations. Since the weight of pebbles per unit volume is 3555% of that of steel balls, and as the power input is directly proportional to the volume weight of the grinding medium, the power input and capacity of pebble mills are correspondingly lower. Thus, in a given grinding circuit, for a certain feed rate, a pebble mill would be much larger than a ball mill, with correspondingly a higher capital cost. However, the increase in capital cost is justified economically by a reduction in operating cost attributed to the elimination of steel grinding media.

In general, ball mills can be operated either wet or dry and are capable of producing products in the order of 100m. This represents reduction ratios of as great as 100. Very large tonnages can be ground with these ball mills because they are very effective material handling devices. Ball mills are rated by power rather than capacity. Today, the largest ball mill in operation is 8.53m diameter and 13.41m long with a corresponding motor power of 22MW (Toromocho, private communications).

Planetary ball mills. A planetary ball mill consists of at least one grinding jar, which is arranged eccentrically on a so-called sun wheel. The direction of movement of the sun wheel is opposite to that of the grinding jars according to a fixed ratio. The grinding balls in the grinding jars are subjected to superimposed rotational movements. The jars are moved around their own axis and, in the opposite direction, around the axis of the sun wheel at uniform speed and uniform rotation ratios. The result is that the superimposition of the centrifugal forces changes constantly (Coriolis motion). The grinding balls describe a semicircular movement, separate from the inside wall, and collide with the opposite surface at high impact energy. The difference in speeds produces an interaction between frictional and impact forces, which releases high dynamic energies. The interplay between these forces produces the high and very effective degree of size reduction of the planetary ball mill. Planetary ball mills are smaller than common ball mills, and are mainly used in laboratories for grinding sample material down to very small sizes.

Vibration mill. Twin- and three-tube vibrating mills are driven by an unbalanced drive. The entire filling of the grinding cylinders, which comprises the grinding media and the feed material, constantly receives impulses from the circular vibrations in the body of the mill. The grinding action itself is produced by the rotation of the grinding media in the opposite direction to the driving rotation and by continuous head-on collisions of the grinding media. The residence time of the material contained in the grinding cylinders is determined by the quantity of the flowing material. The residence time can also be influenced by using damming devices. The sample passes through the grinding cylinders in a helical curve and slides down from the inflow to the outflow. The high degree of fineness achieved is the result of this long grinding procedure. Continuous feeding is carried out by vibrating feeders, rotary valves, or conveyor screws. The product is subsequently conveyed either pneumatically or mechanically. They are basically used to homogenize food and feed.

CryoGrinder. As small samples (100 mg or <20 ml) are difficult to recover from a standard mortar and pestle, the CryoGrinder serves as an alternative. The CryoGrinder is a miniature mortar shaped as a small well and a tightly fitting pestle. The CryoGrinder is prechilled, then samples are added to the well and ground by a handheld cordless screwdriver. The homogenization and collection of the sample is highly efficient. In environmental analysis, this system is used when very small samples are available, such as small organisms or organs (brains, hepatopancreas, etc.).

The vibratory ball mill is another kind of high-energy ball mill that is used mainly for preparing amorphous alloys. The vials capacities in the vibratory mills are smaller (about 10 ml in volume) compared to the previous types of mills. In this mill, the charge of the powder and milling tools are agitated in three perpendicular directions (Fig. 1.6) at very high speed, as high as 1200 rpm.

Another type of the vibratory ball mill, which is used at the van der Waals-Zeeman Laboratory, consists of a stainless steel vial with a hardened steel bottom, and a single hardened steel ball of 6 cm in diameter (Fig. 1.7).

The mill is evacuated during milling to a pressure of 106 Torr, in order to avoid reactions with a gas atmosphere.[44] Subsequently, this mill is suitable for mechanical alloying of some special systems that are highly reactive with the surrounding atmosphere, such as rare earth elements.

A ball mill is a relatively simple apparatus in which the motion of the reactor, or of a part of it, induces a series of collisions of balls with each other and with the reactor walls (Suryanarayana, 2001). At each collision, a fraction of the powder inside the reactor is trapped between the colliding surfaces of the milling tools and submitted to a mechanical load at relatively high strain rates (Suryanarayana, 2001). This load generates a local nonhydrostatic mechanical stress at every point of contact between any pair of powder particles. The specific features of the deformation processes induced by these stresses depend on the intensity of the mechanical stresses themselves, on the details of the powder particle arrangement, that is on the topology of the contact network, and on the physical and chemical properties of powders (Martin et al., 2003; Delogu, 2008a). At the end of any given collision event, the powder that has been trapped is remixed with the powder that has not undergone this process. Correspondingly, at any instant in the mechanical processing, the whole powder charge includes fractions of powder that have undergone a different number of collisions.

The individual reactive processes at the perturbed interface between metallic elements are expected to occur on timescales that are, at most, comparable with the collision duration (Hammerberg et al., 1998; Urakaev and Boldyrev, 2000; Lund and Schuh, 2003; Delogu and Cocco, 2005a,b). Therefore, unless the ball mill is characterized by unusually high rates of powder mixing and frequency of collisions, reactive events initiated by local deformation processes at a given collision are not affected by a successive collision. Indeed, the time interval between successive collisions is significantly longer than the time period required by local structural perturbations for full relaxation (Hammerberg et al., 1998; Urakaev and Boldyrev, 2000; Lund and Schuh, 2003; Delogu and Cocco, 2005a,b).

These few considerations suffice to point out the two fundamental features of powder processing by ball milling, which in turn govern the MA processes in ball mills. First, mechanical processing by ball milling is a discrete processing method. Second, it has statistical character. All of this has important consequences for the study of the kinetics of MA processes. The fact that local deformation events are connected to individual collisions suggests that absolute time is not an appropriate reference quantity to describe mechanically induced phase transformations. Such a description should rather be made as a function of the number of collisions (Delogu et al., 2004). A satisfactory description of the MA kinetics must also account for the intrinsic statistical character of powder processing by ball milling. The amount of powder trapped in any given collision, at the end of collision is indeed substantially remixed with the other powder in the reactor. It follows that the same amount, or a fraction of it, could at least in principle be trapped again in the successive collision.

This is undoubtedly a difficult aspect to take into account in a mathematical description of MA kinetics. There are at least two extreme cases to consider. On the one hand, it could be assumed that the powder trapped in a given collision cannot be trapped in the successive one. On the other, it could be assumed that powder mixing is ideal and that the amount of powder trapped at a given collision has the same probability of being processed in the successive collision. Both these cases allow the development of a mathematical model able to describe the relationship between apparent kinetics and individual collision events. However, the latter assumption seems to be more reliable than the former one, at least for commercial mills characterized by relatively complex displacement in the reactor (Manai et al., 2001, 2004).

A further obvious condition for the successful development of a mathematical description of MA processes is the one related to the uniformity of collision regimes. More specifically, it is highly desirable that the powders trapped at impact always experience the same conditions. This requires the control of the ball dynamics inside the reactor, which can be approximately obtained by using a single milling ball and an amount of powder large enough to assure inelastic impact conditions (Manai et al., 2001, 2004; Delogu et al., 2004). In fact, the use of a single milling ball avoids impacts between balls, which have a remarkable disordering effect on the ball dynamics, whereas inelastic impact conditions permit the establishment of regular and periodic ball dynamics (Manai et al., 2001, 2004; Delogu et al., 2004).

All of the above assumptions and observations represent the basis and guidelines for the development of the mathematical model briefly outlined in the following. It has been successfully applied to the case of a Spex Mixer/ Mill mod. 8000, but the same approach can, in principle, be used for other ball mills.

The Planetary ball mills are the most popular mills used in MM, MA, and MD scientific researches for synthesizing almost all of the materials presented in Figure 1.1. In this type of mill, the milling media have considerably high energy, because milling stock and balls come off the inner wall of the vial (milling bowl or vial) and the effective centrifugal force reaches up to 20 times gravitational acceleration.

The centrifugal forces caused by the rotation of the supporting disc and autonomous turning of the vial act on the milling charge (balls and powders). Since the turning directions of the supporting disc and the vial are opposite, the centrifugal forces alternately are synchronized and opposite. Therefore, the milling media and the charged powders alternatively roll on the inner wall of the vial, and are lifted and thrown off across the bowl at high speed, as schematically presented in Figure 2.17.

However, there are some companies in the world who manufacture and sell number of planetary-type ball mills; Fritsch GmbH ( and Retsch ( are considered to be the oldest and principal companies in this area.

Fritsch produces different types of planetary ball mills with different capacities and rotation speeds. Perhaps, Fritsch Pulverisette P5 (Figure 2.18(a)) and Fritsch Pulverisette P6 (Figure 2.18(b)) are the most popular models of Fritsch planetary ball mills. A variety of vials and balls made of different materials with different capacities, starting from 80ml up to 500ml, are available for the Fritsch Pulverisette planetary ball mills; these include tempered steel, stainless steel, tungsten carbide, agate, sintered corundum, silicon nitride, and zirconium oxide. Figure 2.19 presents 80ml-tempered steel vial (a) and 500ml-agate vials (b) together with their milling media that are made of the same materials.

Figure 2.18. Photographs of Fritsch planetary-type high-energy ball mill of (a) Pulverisette P5 and (b) Pulverisette P6. The equipment is housed in the Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR).

Figure 2.19. Photographs of the vials used for Fritsch planetary ball mills with capacity of (a) 80ml and (b) 500ml. The vials and the balls shown in (a) and (b) are made of tempered steel agate materials, respectively (Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR)).

More recently and in year 2011, Fritsch GmbH ( introduced a new high-speed and versatile planetary ball mill called Planetary Micro Mill PULVERISETTE 7 (Figure 2.20). The company claims this new ball mill will be helpful to enable extreme high-energy ball milling at rotational speed reaching to 1,100rpm. This allows the new mill to achieve sensational centrifugal accelerations up to 95 times Earth gravity. They also mentioned that the energy application resulted from this new machine is about 150% greater than the classic planetary mills. Accordingly, it is expected that this new milling machine will enable the researchers to get their milled powders in short ball-milling time with fine powder particle sizes that can reach to be less than 1m in diameter. The vials available for this new type of mill have sizes of 20, 45, and 80ml. Both the vials and balls can be made of the same materials, which are used in the manufacture of large vials used for the classic Fritsch planetary ball mills, as shown in the previous text.

Retsch has also produced a number of capable high-energy planetary ball mills with different capacities (; namely Planetary Ball Mill PM 100 (Figure 2.21(a)), Planetary Ball Mill PM 100 CM, Planetary Ball Mill PM 200, and Planetary Ball Mill PM 400 (Figure 2.21(b)). Like Fritsch, Retsch offers high-quality ball-milling vials with different capacities (12, 25, 50, 50, 125, 250, and 500ml) and balls of different diameters (540mm), as exemplified in Figure 2.22. These milling tools can be made of hardened steel as well as other different materials such as carbides, nitrides, and oxides.

Figure 2.21. Photographs of Retsch planetary-type high-energy ball mill of (a) PM 100 and (b) PM 400. The equipment is housed in the Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR).

Figure 2.22. Photographs of the vials used for Retsch planetary ball mills with capacity of (a) 80ml, (b) 250ml, and (c) 500ml. The vials and the balls shown are made of tempered steel (Nanotechnology Laboratory, Energy and Building Research Center (EBRC), Kuwait Institute for Scientific Research (KISR)).

Both Fritsch and Retsch companies have offered special types of vials that allow monitoring and measure the gas pressure and temperature inside the vial during the high-energy planetary ball-milling process. Moreover, these vials allow milling the powders under inert (e.g., argon or helium) or reactive gas (e.g., hydrogen or nitrogen) with a maximum gas pressure of 500kPa (5bar). It is worth mentioning here that such a development made on the vials design allows the users and researchers to monitor the progress tackled during the MA and MD processes by following up the phase transformations and heat realizing upon RBM, where the interaction of the gas used with the freshly created surfaces of the powders during milling (adsorption, absorption, desorption, and decomposition) can be monitored. Furthermore, the data of the temperature and pressure driven upon using this system is very helpful when the ball mills are used for the formation of stable (e.g., intermetallic compounds) and metastable (e.g., amorphous and nanocrystalline materials) phases. In addition, measuring the vial temperature during blank (without samples) high-energy ball mill can be used as an indication to realize the effects of friction, impact, and conversion processes.

More recently, Evico-magnetics ( has manufactured an extraordinary high-pressure milling vial with gas-temperature-monitoring (GTM) system. Likewise both system produced by Fritsch and Retsch, the developed system produced by Evico-magnetics, allowing RBM but at very high gas pressure that can reach to 15,000kPa (150bar). In addition, it allows in situ monitoring of temperature and of pressure by incorporating GTM. The vials, which can be used with any planetary mills, are made of hardened steel with capacity up to 220ml. The manufacturer offers also two-channel system for simultaneous use of two milling vials.

Using different ball mills as examples, it has been shown that, on the basis of the theory of glancing collision of rigid bodies, the theoretical calculation of tPT conditions and the kinetics of mechanochemical processes are possible for the reactors that are intended to perform different physicochemical processes during mechanical treatment of solids. According to the calculations, the physicochemical effect of mechanochemical reactors is due to short-time impulses of pressure (P = ~ 10101011 dyn cm2) with shift, and temperature T(x, t). The highest temperature impulse T ~ 103 K are caused by the dry friction phenomenon.

Typical spatial and time parameters of the impactfriction interaction of the particles with a size R ~ 104 cm are as follows: localization region, x ~ 106 cm; time, t ~ 108 s. On the basis of the obtained theoretical results, the effect of short-time contact fusion of particles treated in various comminuting devices can play a key role in the mechanism of activation and chemical reactions for wide range of mechanochemical processes. This role involves several aspects, that is, the very fact of contact fusion transforms the solid phase process onto another qualitative level, judging from the mass transfer coefficients. The spatial and time characteristics of the fused zone are such that quenching of non-equilibrium defects and intermediate products of chemical reactions occurs; solidification of the fused zone near the contact point results in the formation of a nanocrystal or nanoamor- phous state. The calculation models considered above and the kinetic equations obtained using them allow quantitative ab initio estimates of rate constants to be performed for any specific processes of mechanical activation and chemical transformation of the substances in ball mills.

There are two classes of ball mills: planetary and mixer (also called swing) mill. The terms high-speed vibration milling (HSVM), high-speed ball milling (HSBM), and planetary ball mill (PBM) are often used. The commercial apparatus are PBMs Fritsch P-5 and Fritsch Pulverisettes 6 and 7 classic line, the Retsch shaker (or mixer) mills ZM1, MM200, MM400, AS200, the Spex 8000, 6750 freezer/mill SPEX CertiPrep, and the SWH-0.4 vibrational ball mill. In some instances temperature controlled apparatus were used (58MI1); freezer/mills were used in some rare cases (13MOP1824).

The balls are made of stainless steel, agate (SiO2), zirconium oxide (ZrO2), or silicon nitride (Si3N). The use of stainless steel will contaminate the samples with steel particles and this is a problem both for solid-state NMR and for drug purity.

However, there are many types of ball mills (see Chapter 2 for more details), such as drum ball mills, jet ball mills, bead-mills, roller ball mills, vibration ball mills, and planetary ball mills, they can be grouped or classified into two types according to their rotation speed, as follows: (i) high-energy ball mills and (ii) low-energy ball mills. Table 3.1 presents characteristics and comparison between three types of ball mills (attritors, vibratory mills, planetary ball mills and roller mills) that are intensively used on MA, MD, and MM techniques.

In fact, choosing the right ball mill depends on the objectives of the process and the sort of materials (hard, brittle, ductile, etc.) that will be subjecting to the ball-milling process. For example, the characteristics and properties of those ball mills used for reduction in the particle size of the starting materials via top-down approach, or so-called mechanical milling (MM process), or for mechanically induced solid-state mixing for fabrications of composite and nanocomposite powders may differ widely from those mills used for achieving mechanically induced solid-state reaction (MISSR) between the starting reactant materials of elemental powders (MA process), or for tackling dramatic phase transformation changes on the structure of the starting materials (MD). Most of the ball mills in the market can be employed for different purposes and for preparing of wide range of new materials.

Martinez-Sanchez et al. [4] have pointed out that employing of high-energy ball mills not only contaminates the milled amorphous powders with significant volume fractions of impurities that come from milling media that move at high velocity, but it also affects the stability and crystallization properties of the formed amorphous phase. They have proved that the properties of the formed amorphous phase (Mo53Ni47) powder depends on the type of the ball-mill equipment (SPEX 8000D Mixer/Mill and Zoz Simoloter mill) used in their important investigations. This was indicated by the high contamination content of oxygen on the amorphous powders prepared by SPEX 8000D Mixer/Mill, when compared with the corresponding amorphous powders prepared by Zoz Simoloter mill. Accordingly, they have attributed the poor stabilities, indexed by the crystallization temperature of the amorphous phase formed by SPEX 8000D Mixer/Mill to the presence of foreign matter (impurities).

flow of materials in rod mills as compared to ball mills in dry systems - sciencedirect

The rod mill product is characterized by its narrow size distribution if it is compared with that of a ball mill operating under the same conditions in open circuit. This is partly due to the bridging action of the rods over the coarse particles avoiding the fine sizes (the grinding kinetics aspect), and partly due to the nature of material flow through the mill with its rod load (the material transport aspect). This article will stress mainly on the nature of material transport within the rod mill. It was found that the presence of rods minimizes the particulate segregation which is caused by differences in particle size and/or material density of the flowing components in the system. Segregation due to differences in particle shape (spherical versus natural particle shapes) and/or surface roughness was less affected in the presence of rods as stirring media in the system. The geometric restrictions on the axial and radial movement of the rods inside the drum, in addition to the restricted particlerod interactions affected the axial and radial dispersion of the material flowing through the rod mill. On the other hand, particulate segregation in the ball mill is almost eliminated among all material components different in size, density, shape, and/or surface roughness. Its product displays very good mixing under all operating and material conditions.

Material transport in rod mills. Material transport in ball mills. Segregation and mixedness in tumbling mills. Axial dispersion in tumbling mills. Comparison between material transport in ball mills and in rod mills.

on agglomeration phenomena in ball mills: application to the synthesis of composite materials - sciencedirect

Composites of poly(vinyl acetate) filled with calcium carbonate (CaCO3) have been synthesized in a ball mill. The different steps in fragmentation and agglomeration phenomena have been identified. The materials have first been ground separately to characterize their behaviour in the mill. Then, they were ground together. It has been shown that small CaCO3 fragments cover PVA particles, limiting for a first time the agglomeration of these and permitting their size reduction. Then, when PVA fragments are small enough, a competition between size reduction and agglomeration occurs, which favours the dispersion of CaCO3 in the matrix. It has also been observed that the presence of the filler does not modify significantly the molecular mobility of PVA.

Des composites de poly(actate de vinyle) chargs de carbonate de calcium ont t synthtiss par co-broyage dans un broyeur boulets. Les diffrentes tapes de fragmentation et d'agglomration se produisant au cours de l'opration ont t identifies. Les matriaux ont tout d'abord t broys sparment pour caractriser leurs comportements dans le broyeur. Ils ont ensuite t broys ensemble. Dans un premier temps, de petits fragments de carbonate de calcium recouvrent la surface des particules de polymre, limitant ainsi l'agglomration de celles-ci et favorisant leur rduction de taille. Par la suite, lorsque les fragments de polymre ont atteint une taille suffisamment faible, une comptition entre la rduction de taille et l'agglomration des fragments se produit, ce qui favorise la dispersion du carbonate de calcium dans la matrice. Il a aussi t observ que la prsence de la charge ne modifie pas de manire significative la temprature de transition vitreuse du polymre. La libert de mouvement de la chane molculaire n'est donc que peu affecte.

use of prosyanov kaolin for grinding nonplastic materials in ball mills | springerlink

Ivakhina, L.A., Gress, R.I. & Ivakhin, S.I. Use of prosyanov kaolin for grinding nonplastic materials in ball mills. Glass Ceram 19, 552554 (1962).

ball mills

In all ore dressing and milling Operations, including flotation, cyanidation, gravity concentration, and amalgamation, the Working Principle is to crush and grind, often with rob mill & ball mills, the ore in order to liberate the minerals. In the chemical and process industries, grinding is an important step in preparing raw materials for subsequent treatment.In present day practice, ore is reduced to a size many times finer than can be obtained with crushers. Over a period of many years various fine grinding machines have been developed and used, but the ball mill has become standard due to its simplicity and low operating cost.

A ball millefficiently operated performs a wide variety of services. In small milling plants, where simplicity is most essential, it is not economical to use more than single stage crushing, because the Steel-Head Ball or Rod Mill will take up to 2 feed and grind it to the desired fineness. In larger plants where several stages of coarse and fine crushing are used, it is customary to crush from 1/2 to as fine as 8 mesh.

Many grinding circuits necessitate regrinding of concentrates or middling products to extremely fine sizes to liberate the closely associated minerals from each other. In these cases, the feed to the ball mill may be from 10 to 100 mesh or even finer.

Where the finished product does not have to be uniform, a ball mill may be operated in open circuit, but where the finished product must be uniform it is essential that the grinding mill be used in closed circuit with a screen, if a coarse product is desired, and with a classifier if a fine product is required. In most cases it is desirable to operate the grinding mill in closed circuit with a screen or classifier as higher efficiency and capacity are obtained. Often a mill using steel rods as the grinding medium is recommended, where the product must have the minimum amount of fines (rods give a more nearly uniform product).

Often a problem requires some study to determine the economic fineness to which a product can or should be ground. In this case the 911Equipment Company offers its complete testing service so that accurate grinding mill size may be determined.

Until recently many operators have believed that one particular type of grinding mill had greater efficiency and resulting capacity than some other type. However, it is now commonly agreed and accepted that the work done by any ballmill depends directly upon the power input; the maximum power input into any ball or rod mill depends upon weight of grinding charge, mill speed, and liner design.

The apparent difference in capacities between grinding mills (listed as being the same size) is due to the fact that there is no uniform method of designating the size of a mill, for example: a 5 x 5 Ball Mill has a working diameter of 5 inside the liners and has 20 per cent more capacity than all other ball mills designated as 5 x 5 where the shell is 5 inside diameter and the working diameter is only 48 with the liners in place.

Ball-Rod Mills, based on 4 liners and capacity varying as 2.6 power of mill diameter, on the 5 size give 20 per cent increased capacity; on the 4 size, 25 per cent; and on the 3 size, 28 per cent. This fact should be carefully kept in mind when determining the capacity of a Steel- Head Ball-Rod Mill, as this unit can carry a greater ball or rod charge and has potentially higher capacity in a given size when the full ball or rod charge is carried.

A mill shorter in length may be used if the grinding problem indicates a definite power input. This allows the alternative of greater capacity at a later date or a considerable saving in first cost with a shorter mill, if reserve capacity is not desired. The capacities of Ball-Rod Mills are considerably higher than many other types because the diameters are measured inside the liners.

The correct grinding mill depends so much upon the particular ore being treated and the product desired, that a mill must have maximum flexibility in length, type of grinding medium, type of discharge, and speed.With the Ball-Rod Mill it is possible to build this unit in exact accordance with your requirements, as illustrated.

To best serve your needs, the Trunnion can be furnished with small (standard), medium, or large diameter opening for each type of discharge. The sketch shows diagrammatic arrangements of the four different types of discharge for each size of trunnion opening, and peripheral discharge is described later.

Ball-Rod Mills of the grate discharge type are made by adding the improved type of grates to a standard Ball-Rod Mill. These grates are bolted to the discharge head in much the same manner as the standard headliners.

The grates are of alloy steel and are cast integral with the lifter bars which are essential to the efficient operation of this type of ball or rod mill. These lifter bars have a similar action to a pump:i. e., in lifting the product so as to discharge quickly through the mill trunnion.

These Discharge Grates also incorporate as an integral part, a liner between the lifters and steel head of the ball mill to prevent wear of the mill head. By combining these parts into a single casting, repairs and maintenance are greatly simplified. The center of the grate discharge end of this mill is open to permit adding of balls or for adding water to the mill through the discharge end.

Instead of being constructed of bars cast into a frame, Grates are cast entire and have cored holes which widen toward the outside of the mill similar to the taper in grizzly bars. The grate type discharge is illustrated.

The peripheral discharge type of Ball-Rod Mill is a modification of the grate type, and is recommended where a free gravity discharge is desired. It is particularly applicable when production of too many fine particles is detrimental and a quick pass through the mill is desired, and for dry grinding.

The drawings show the arrangement of the peripheral discharge. The discharge consists of openings in the shell into which bushings with holes of the desired size are inserted. On the outside of the mill, flanges are used to attach a stationary discharge hopper to prevent pulp splash or too much dust.

The mill may be operated either as a peripheral discharge or a combination or peripheral and trunnion discharge unit, depending on the desired operating conditions. If at any time the peripheral discharge is undesirable, plugs inserted into the bushings will convert the mill to a trunnion discharge type mill.

Unless otherwise specified, a hard iron liner is furnished. This liner is made of the best grade white iron and is most serviceable for the smaller size mills where large balls are not used. Hard iron liners have a much lower first cost.

Electric steel, although more expensive than hard iron, has advantage of minimum breakage and allows final wear to thinner section. Steel liners are recommended when the mills are for export or where the source of liner replacement is at a considerable distance.

Molychrome steel has longer wearing qualities and greater strength than hard iron. Breakage is not so apt to occur during shipment, and any size ball can be charged into a mill equipped with molychrome liners.

Manganese liners for Ball-Rod Mills are the world famous AMSCO Brand, and are the best obtainable. The first cost is the highest, but in most cases the cost per ton of ore ground is the lowest. These liners contain 12 to 14% manganese.

The feed and discharge trunnions are provided with cast iron or white iron throat liners. As these parts are not subjected to impact and must only withstand abrasion, alloys are not commonly used but can be supplied.

Gears for Ball-Rod Mills drives are furnished as standard on the discharge end of the mill where they are out of the way of the classifier return, scoop feeder, or original feed. Due to convertible type construction the mills can be furnished with gears on the feed end. Gear drives are available in two alternative combinations, which are:

All pinions are properly bored, key-seated, and pressed onto the steel countershaft, which is oversize and properly keyseated for the pinion and drive pulleys or sheaves. The countershaft operates on high grade, heavy duty, nickel babbitt bearings.

Any type of drive can be furnished for Ball-Rod Mills in accordance with your requirements. Belt drives are available with pulleys either plain or equipped with friction clutch. Various V- Rope combinations can also be supplied.

The most economical drive to use up to 50 H. P., is a high starting torque motor connected to the pinion shaft by means of a flat or V-Rope drive. For larger size motors the wound rotor (slip ring) is recommended due to its low current requirement in starting up the ball mill.

Should you be operating your own power plant or have D. C. current, please specify so that there will be no confusion as to motor characteristics. If switches are to be supplied, exact voltage to be used should be given.

Even though many ores require fine grinding for maximum recovery, most ores liberate a large percentage of the minerals during the first pass through the grinding unit. Thus, if the free minerals can be immediately removed from the ball mill classifier circuit, there is little chance for overgrinding.

This is actually what has happened wherever Mineral Jigs or Unit Flotation Cells have been installed in the ball mill classifier circuit. With the installation of one or both of these machines between the ball mill and classifier, as high as 70 per cent of the free gold and sulphide minerals can be immediately removed, thus reducing grinding costs and improving over-all recovery. The advantage of this method lies in the fact that heavy and usually valuable minerals, which otherwise would be ground finer because of their faster settling in the classifier and consequent return to the grinding mill, are removed from the circuit as soon as freed. This applies particularly to gold and lead ores.

Ball-Rod Mills have heavy rolled steel plate shells which are arc welded inside and outside to the steel heads or to rolled steel flanges, depending upon the type of mill. The double welding not only gives increased structural strength, but eliminates any possibility of leakage.

Where a single or double flanged shell is used, the faces are accurately machined and drilled to template to insure perfect fit and alignment with the holes in the head. These flanges are machined with male and female joints which take the shearing stresses off the bolts.

The Ball-Rod Mill Heads are oversize in section, heavily ribbed and are cast from electric furnace steel which has a strength of approximately four times that of cast iron. The head and trunnion bearings are designed to support a mill with length double its diameter. This extra strength, besides eliminating the possibility of head breakage or other structural failure (either while in transit or while in service), imparts to Ball-Rod Mills a flexibility heretofore lacking in grinding mills. Also, for instance, if you have a 5 x 5 mill, you can add another 5 shell length and thus get double the original capacity; or any length required up to a maximum of 12 total length.

On Type A mills the steel heads are double welded to the rolled steel shell. On type B and other flanged type mills the heads are machined with male and female joints to match the shell flanges, thus taking the shearing stresses from the heavy machine bolts which connect the shell flanges to the heads.

The manhole cover is protected from wear by heavy liners. An extended lip is provided for loosening the door with a crow-bar, and lifting handles are also provided. The manhole door is furnished with suitable gaskets to prevent leakage.

The mill trunnions are carried on heavy babbitt bearings which provide ample surface to insure low bearing pressure. If at any time the normal length is doubled to obtain increased capacity, these large trunnion bearings will easily support the additional load. Trunnion bearings are of the rigid type, as the perfect alignment of the trunnion surface on Ball-Rod Mills eliminates any need for the more expensive self-aligning type of bearing.

The cap on the upper half of the trunnion bearing is provided with a shroud which extends over the drip flange of the trunnion and effectively prevents the entrance of dirt or grit. The bearing has a large space for wool waste and lubricant and this is easily accessible through a large opening which is covered to prevent dirt from getting into the bearing.Ball and socket bearings can be furnished.

Scoop Feeders for Ball-Rod Mills are made in various radius sizes. Standard scoops are made of cast iron and for the 3 size a 13 or 19 feeder is supplied, for the 4 size a 30 or 36, for the 5 a 36 or 42, and for the 6 a 42 or 48 feeder. Welded steel scoop feeders can, however, be supplied in any radius.

The correct size of feeder depends upon the size of the classifier, and the smallest feeder should be used which will permit gravity flow for closed circuit grinding between classifier and the ball or rod mill. All feeders are built with a removable wearing lip which can be easily replaced and are designed to give minimum scoop wear.

A combination drum and scoop feeder can be supplied if necessary. This feeder is made of heavy steel plate and strongly welded. These drum-scoop feeders are available in the same sizes as the cast iron feeders but can be built in any radius. Scoop liners can be furnished.

The trunnions on Ball-Rod Mills are flanged and carefully machined so that scoops are held in place by large machine bolts and not cap screws or stud bolts. The feed trunnion flange is machined with a shoulder for insuring a proper fit for the feed scoop, and the weight of the scoop is carried on this shoulder so that all strain is removed from the bolts which hold the scoop.

High carbon steel rods are recommended, hot rolled, hot sawed or sheared, to a length of 2 less than actual length of mill taken inside the liners. The initial rod charge is generally a mixture ranging from 1.5 to 3 in diameter. During operation, rod make-up is generally the maximum size. The weights per lineal foot of rods of various diameters are approximately: 1.5 to 6 lbs.; 2-10.7 lbs.; 2.5-16.7 lbs.; and 3-24 lbs.

Forged from the best high carbon manganese steel, they are of the finest quality which can be produced and give long, satisfactory service. Data on ball charges for Ball-Rod Mills are listed in Table 5. Further information regarding grinding balls is included in Table 6.

Rod Mills has a very define and narrow discharge product size range. Feeding a Rod Mill finer rocks will greatly impact its tonnage while not significantly affect its discharge product sizes. The 3.5 diameter rod of a mill, can only grind so fine.

Crushers are well understood by most. Rod and Ball Mills not so much however as their size reduction actions are hidden in the tube (mill). As for Rod Mills, the image above best expresses what is going on inside. As rocks is feed into the mill, they are crushed (pinched) by the weight of its 3.5 x 16 rods at one end while the smaller particles migrate towards the discharge end and get slightly abraded (as in a Ball Mill) on the way there.

We haveSmall Ball Mills for sale coming in at very good prices. These ball mills are relatively small, bearing mounted on a steel frame. All ball mills are sold with motor, gears, steel liners and optional grinding media charge/load.

Ball Mills or Rod Mills in a complete range of sizes up to 10 diameter x20 long, offer features of operation and convertibility to meet your exactneeds. They may be used for pulverizing and either wet or dry grindingsystems. Mills are available in both light-duty and heavy-duty constructionto meet your specific requirements.

All Mills feature electric cast steel heads and heavy rolled steelplate shells. Self-aligning main trunnion bearings on large mills are sealedand internally flood-lubricated. Replaceable mill trunnions. Pinion shaftbearings are self-aligning, roller bearing type, enclosed in dust-tightcarrier. Adjustable, single-unit soleplate under trunnion and drive pinionsfor perfect, permanent gear alignment.

Ball Mills can be supplied with either ceramic or rubber linings for wet or dry grinding, for continuous or batch type operation, in sizes from 15 x 21 to 8 x 12. High density ceramic linings of uniform hardness male possible thinner linings and greater and more effective grinding volume. Mills are shipped with liners installed.

Complete laboratory testing service, mill and air classifier engineering and proven equipment make possible a single source for your complete dry-grinding mill installation. Units available with air swept design and centrifugal classifiers or with elevators and mechanical type air classifiers. All sizes and capacities of units. Laboratory-size air classifier also available.

A special purpose batch mill designed especially for grinding and mixing involving acids and corrosive materials. No corners mean easy cleaning and choice of rubber or ceramic linings make it corrosion resistant. Shape of mill and ball segregation gives preferential grinding action for grinding and mixing of pigments and catalysts. Made in 2, 3 and 4 diameter grinding drums.

Nowadays grinding mills are almost extensively used for comminution of materials ranging from 5 mm to 40 mm (3/161 5/8) down to varying product sizes. They have vast applications within different branches of industry such as for example the ore dressing, cement, lime, porcelain and chemical industries and can be designed for continuous as well as batch grinding.

Ball mills can be used for coarse grinding as described for the rod mill. They will, however, in that application produce more fines and tramp oversize and will in any case necessitate installation of effective classification.If finer grinding is wanted two or three stage grinding is advisable as for instant primary rod mill with 75100 mm (34) rods, secondary ball mill with 2540 mm(11) balls and possibly tertiary ball mill with 20 mm () balls or cylpebs.To obtain a close size distribution in the fine range the specific surface of the grinding media should be as high as possible. Thus as small balls as possible should be used in each stage.

The principal field of rod mill usage is the preparation of products in the 5 mm0.4 mm (4 mesh to 35 mesh) range. It may sometimes be recommended also for finer grinding. Within these limits a rod mill is usually superior to and more efficient than a ball mill. The basic principle for rod grinding is reduction by line contact between rods extending the full length of the mill, resulting in selective grinding carried out on the largest particle sizes. This results in a minimum production of extreme fines or slimes and more effective grinding work as compared with a ball mill. One stage rod mill grinding is therefore suitable for preparation of feed to gravimetric ore dressing methods, certain flotation processes with slime problems and magnetic cobbing. Rod mills are frequently used as primary mills to produce suitable feed to the second grinding stage. Rod mills have usually a length/diameter ratio of at least 1.4.

Tube mills are in principle to be considered as ball mills, the basic difference being that the length/diameter ratio is greater (35). They are commonly used for surface cleaning or scrubbing action and fine grinding in open circuit.

In some cases it is suitable to use screened fractions of the material as grinding media. Such mills are usually called pebble mills, but the working principle is the same as for ball mills. As the power input is approximately directly proportional to the volume weight of the grinding media, the power input for pebble mills is correspondingly smaller than for a ball mill.

A dry process requires usually dry grinding. If the feed is wet and sticky, it is often necessary to lower the moisture content below 1 %. Grinding in front of wet processes can be done wet or dry. In dry grinding the energy consumption is higher, but the wear of linings and charge is less than for wet grinding, especially when treating highly abrasive and corrosive material. When comparing the economy of wet and dry grinding, the different costs for the entire process must be considered.

An increase in the mill speed will give a directly proportional increase in mill power but there seems to be a square proportional increase in the wear. Rod mills generally operate within the range of 6075 % of critical speed in order to avoid excessive wear and tangled rods. Ball and pebble mills are usually operated at 7085 % of critical speed. For dry grinding the speed is usually somewhat lower.

The mill lining can be made of rubber or different types of steel (manganese or Ni-hard) with liner types according to the customers requirements. For special applications we can also supply porcelain, basalt and other linings.

The mill power is approximately directly proportional to the charge volume within the normal range. When calculating a mill 40 % charge volume is generally used. In pebble and ball mills quite often charge volumes close to 50 % are used. In a pebble mill the pebble consumption ranges from 315 % and the charge has to be controlled automatically to maintain uniform power consumption.

In all cases the net energy consumption per ton (kWh/ton) must be known either from previous experience or laboratory tests before mill size can be determined. The required mill net power P kW ( = ton/hX kWh/ton) is obtained from

Trunnions of S.G. iron or steel castings with machined flange and bearing seat incl. device for dismantling the bearings. For smaller mills the heads and trunnions are sometimes made in grey cast iron.

The mills can be used either for dry or wet, rod or ball grinding. By using a separate attachment the discharge end can be changed so that the mills can be used for peripheral instead of overflow discharge.

what is ball mill | how many types of ball mills | m&c

Ball mill is a very important mineral grading equipment, which is indispensable for mineral processing, building materials, metallurgy and chemical industry. With the need of market, a variety of different types of ball mills have emerged. According to different standards, there are many types of ball mills.

1. Short Cylinder Ball Mill: The ball mill with the cylinder length (L) less than 2 times of the cylinder diameter, i.e. the ball mill with L 2D is short cylinder ball mill, which is usually of single bin structure, mainly used for rough grinding or primary grinding operation, and can realize the wide use of 2-3 ball mills in series.

3. Gravel Mill: The grinding medium mainly includes pebble, gravel, sand, porcelain ball, etc. Most of the gravel mills use porcelain or granite as lining plates, which are widely used in the production of color cement, white cement, ceramics and other fields.

1. Tail Discharge Mill: The head and tail of tail discharge mill are used as the inlet and outlet of materials. When the mill is working, the material is fed from the inlet end and discharged from the other end.

2. Middle Discharge Mill: The inlet of the middle discharge mill is at both ends, and the outlet is in the middle of the mill. Generally, materials are fed from both ends and then discharged from the middle of the cylinder.

1. Center Drive Ball Mill: The drive power device is in the center of the fuselage, and the motor realizes the operation of the ball mill through the reducer. In operation, the hollow shaft in the center of the ball mill drives the grinding body to rotate under the drive of the power system.

1. Wet Type Ball Mill: Water is added at the same time of feeding, and the material is discharged into a certain concentration of slurry. In the closed-circuit system, it forms a closed-circuit operation with the hydraulic grading equipment.

1. Vertical Ball Mill: The vertical ball mill is a new type of ball mill which places the cylinder upright. Through a large number of experiments, it is found that the vertical ball mill has the advantages of high grinding efficiency, low energy consumption and low noise.

2. Horizontal Ball Mill: The horizontal ball mill is used for grinding and dispersing under the closed condition to prevent solvent volatilization. It is especially suitable for fine grinding and mixing of high-purity materials.

error - cookies turned off

Cookies are disabled for this browser. Wiley Online Library requires cookies for authentication and use of other site features; therefore, cookies must be enabled to browse the site. Detailed information on how Wiley uses cookies can be found in our Privacy Policy.

Please check your email for instructions on resetting your password. If you do not receive an email within 10 minutes, your email address may not be registered, and you may need to create a new Wiley Online Library account.