modern technology of iron ore beneficiation grinding mill

modern mining equipment for iron ore beneficiation,iron ore mining equipment manufacturer

In recent years, many sophisticated technologies are developed to method iron ore. As an professional firm in the mining enterprise, we will give our shoppers with high-tech and prime good quality iron ore beneficiation equipment. Our most well-liked merchandise is crushing gear, grinding equipment, sand generating equipment and separating machine. For iron ore crushing, you'll have the ability to select iron ore jaw crusher, cone crusher, impact crusher and grinding mills like ball mill, vertical roller mill and super skinny grinding mill. For iron ore separating, you'll be able to use our magnetic separator, flotation separator or gravity separator.

1. Raw iron ore is exploded from the iron ore mines firstly. Then vibrating feeder will feed iron ores in to the iron ore principal crusher crushing cavity, in which big size raw iron ore is going to be realized into iron ore sand. The iron ore sand is transmitted into secondary crushers by belt conveyors evenly and continuously. Then the out let of secondary crusher is carried into tertiary crusher, in which iron ore will probably be processed into powder size iron ore particles. Iron ore crushing procedure is ended right here;

3. Iron ore beneficiation approach is utilised to enhance the purity to 59% or a lot more. Iron ore beneficiation approach is essential. It tends to make the calcine approach effortless with increased efficiency. The outlet of beneficiation procedure is fine ore. Following sintering with high temperature, iron pellet ore will be calcined inside the blast furnace and lastly processed into iron steel.

As an expert manufacturer of mining equipment, Shanghai ZENITH Mining and Construction Machinery Co., Ltd. can supply you with both comprehensive production line and efficient machine. Our full range of technical services to help you explain to resolve questions and help you improve efficiency of production. Our products have different models and a variety of production capacity. If you want to get more product information (for example: price, production capacity, model), you can consult our professional customer service staff or to see our products section.

mineral processing | metallurgy | britannica

Mineral processing, art of treating crude ores and mineral products in order to separate the valuable minerals from the waste rock, or gangue. It is the first process that most ores undergo after mining in order to provide a more concentrated material for the procedures of extractive metallurgy. The primary operations are comminution and concentration, but there are other important operations in a modern mineral processing plant, including sampling and analysis and dewatering. All these operations are discussed in this article.

Routine sampling and analysis of the raw material being processed are undertaken in order to acquire information necessary for the economic appraisal of ores and concentrates. In addition, modern plants have fully automatic control systems that conduct in-stream analysis of the material as it is being processed and make adjustments at any stage in order to produce the richest possible concentrate at the lowest possible operating cost.

Sampling is the removal from a given lot of material a portion that is representative of the whole yet of convenient size for analysis. It is done either by hand or by machine. Hand sampling is usually expensive, slow, and inaccurate, so that it is generally applied only where the material is not suitable for machine sampling (slimy ore, for example) or where machinery is either not available or too expensive to install.

Many different sampling devices are available, including shovels, pipe samplers, and automatic machine samplers. For these sampling machines to provide an accurate representation of the whole lot, the quantity of a single sample, the total number of samples, and the kind of samples taken are of decisive importance. A number of mathematical sampling models have been devised in order to arrive at the appropriate criteria for sampling.

After one or more samples are taken from an amount of ore passing through a material stream such as a conveyor belt, the samples are reduced to quantities suitable for further analysis. Analytical methods include chemical, mineralogical, and particle size.

Even before the 16th century, comprehensive schemes of assaying (measuring the value of) ores were known, using procedures that do not differ materially from those employed in modern times. Although conventional methods of chemical analysis are used today to detect and estimate quantities of elements in ores and minerals, they are slow and not sufficiently accurate, particularly at low concentrations, to be entirely suitable for process control. As a consequence, to achieve greater efficiency, sophisticated analytical instrumentation is being used to an increasing extent.

In emission spectroscopy, an electric discharge is established between a pair of electrodes, one of which is made of the material being analyzed. The electric discharge vaporizes a portion of the sample and excites the elements in the sample to emit characteristic spectra. Detection and measurement of the wavelengths and intensities of the emission spectra reveal the identities and concentrations of the elements in the sample.

In X-ray fluorescence spectroscopy, a sample bombarded with X rays gives off fluorescent X-radiation of wavelengths characteristic of its elements. The amount of emitted X-radiation is related to the concentration of individual elements in the sample. The sensitivity and precision of this method are poor for elements of low atomic number (i.e., few protons in the nucleus, such as boron and beryllium), but for slags, ores, sinters, and pellets where the majority of the elements are in the higher atomic number range, as in the case of gold and lead, the method has been generally suitable.

A successful separation of a valuable mineral from its ore can be determined by heavy-liquid testing, in which a single-sized fraction of a ground ore is suspended in a liquid of high specific gravity. Particles of less density than the liquid remain afloat, while denser particles sink. Several different fractions of particles with the same density (and, hence, similar composition) can be produced, and the valuable mineral components can then be determined by chemical analysis or by microscopic analysis of polished sections.

Coarsely ground minerals can be classified according to size by running them through special sieves or screens, for which various national and international standards have been accepted. One old standard (now obsolete) was the Tyler Series, in which wire screens were identified by mesh size, as measured in wires or openings per inch. Modern standards now classify sieves according to the size of the aperture, as measured in millimetres or micrometres (10-6 metre).

In order to separate the valuable components of an ore from the waste rock, the minerals must be liberated from their interlocked state physically by comminution. As a rule, comminution begins by crushing the ore to below a certain size and finishes by grinding it into powder, the ultimate fineness of which depends on the fineness of dissemination of the desired mineral.

In primitive times, crushers were small, hand-operated pestles and mortars, and grinding was done by millstones turned by men, horses, or waterpower. Today, these processes are carried out in mechanized crushers and mills. Whereas crushing is done mostly under dry conditions, grinding mills can be operated both dry and wet, with wet grinding being predominant.

Some ores occur in nature as mixtures of discrete mineral particles, such as gold in gravel beds and streams and diamonds in mines. These mixtures require little or no crushing, since the valuables are recoverable using other techniques (breaking up placer material in log washers, for instance). Most ores, however, are made up of hard, tough rock masses that must be crushed before the valuable minerals can be released.

In order to produce a crushed material suitable for use as mill feed (100 percent of the pieces must be less than 10 to 14 millimetres, or 0.4 to 0.6 inch, in diameter), crushing is done in stages. In the primary stage, the devices used are mostly jaw crushers with openings as wide as two metres. These crush the ore to less than 150 millimetres, which is a suitable size to serve as feed for the secondary crushing stage. In this stage, the ore is crushed in cone crushers to less than 10 to 15 millimetres. This material is the feed for the grinding mill.

In this process stage, the crushed material can be further disintegrated in a cylinder mill, which is a cylindrical container built to varying length-to-diameter ratios, mounted with the axis substantially horizontal, and partially filled with grinding bodies (e.g., flint stones, iron or steel balls) that are caused to tumble, under the influence of gravity, by revolving the container.

A special development is the autogenous or semiautogenous mill. Autogenous mills operate without grinding bodies; instead, the coarser part of the ore simply grinds itself and the smaller fractions. To semiautogenous mills (which have become widespread), 5 to 10 percent grinding bodies (usually metal spheres) are added.

Yet another development, combining the processes of crushing and grinding, is the roll crusher. This consists essentially of two cylinders that are mounted on horizontal shafts and driven in opposite directions. The cylinders are pressed together under high pressure, so that comminution takes place in the material bed between them.

iron ore beneficiation technology and process,gravity and magnetic separation | prominer (shanghai) mining technology co.,ltd

Iron ore is one of the important raw materials for the production of pig iron and steel in the iron and steel industry. There are many types of iron ore. According to the magnetic properties of the ore, it is mainly divided into strong magnetism and weak magnetism. In order to improve the efficiency and production capacity of ore dressing and meet the smelting production requirements of iron and steel plants, appropriate and technology should be selected according to the different properties of different iron ore during beneficiation to achieve better beneficiation effects.

The composition of iron ore of a single magnetite type is simple, and the proportion of iron minerals is very large. Gangue minerals are mostly quartz and silicate minerals. According to production practice research, weak magnetic separation methods are often used to separate them. In a medium-sized magnetic separation plant, the ore is demagnetized and then enters the crushing and screening workshop to be crushed to a qualified particle size, and then fed to the grinding workshop for grinding operations. If the ore size after grinding is greater than 0.2 mm, one stage of grinding and magnetic separation process is adopted; if it is less than 0.2 mm, two stages of grinding and magnetic separation process are adopted. In order to increase the recovery rate of iron ore as much as possible, the qualified tailings may be scavenged and further recovered. In areas lacking water resources, a magnetic separator can be used for grinding and magnetic separation operations.

Because magnetite is easily depleted under the effect of weathering, such ores are generally sorted by dry magnetic separator to remove part of gangue minerals, and then subjected to grinding and magnetic separation to obtain concentrate.

The magnetite in the polymetallic magnetite is sulfide magnetite, and the gangue mineral contains silicate or carbonate, and is accompanied by cobalt pyrite, chalcopyrite and apatite. This kind of ore generally adopts the combined process of weak magnetic separation and flotation to recover iron and sulfur respectively.

Process flow: the ore is fed into the magnetic separator for weak magnetic separation to obtain magnetite concentrate and weak magnetic separation tailings, and the tailings enter the flotation process to obtain iron and sulfur.

The common process flow in actual production is: the raw ore is fed into the shaft furnace for roasting and magnetization, and after magnetization, it is fed into the magnetic separator for magnetic separation.

Gravity separation and magnetic separation are mainly used to separate coarse-grained and medium-grained weakly magnetic iron ore (20~2 mm). During gravity separation, heavy medium or jigging methods are commonly used for the gravity separation of coarse and very coarse (>20 mm) ores; spiral chutes, shakers and centrifugal concentrators for medium to fine (2~0.2mm) ores, etc. Reselect method.

In magnetic separation, the strong magnetic separator of coarse and medium-grained ore is usually dry-type strong magnetic separator; the fine-grained ore is usually wet-type strong magnetic separator. Because the grade of concentrate obtained by using one beneficiation method alone is not high, a combined process is often used:

Combination of flotation and magnetic separation: the magnetite-hematite ore of qualified particle size is fed into the magnetic separator for weak magnetic separation to obtain strong magnetic iron ore and weak magnetic tailings, and the tailings are fed into the magnetic separator for weak magnetic separation. In strong magnetic separation, strong magnetic separation tailings and concentrate are obtained, and the concentrate is fed to the flotation machine for flotation to obtain flotation iron concentrate tailings.

Combined gravity separation and magnetic separation: similar to the combined flow of flotation and magnetic separation, only the flotation is replaced by gravity separation, and the products are gravity separation concentrate and tailings. These two combined methods can improve the concentrate grade.

The above are mainly the common separation methods and technological processes of strong and weak magnetic iron ore. The composition of natural iron ore is often not so simple, so in actual production, it is necessary to clarify the mineral composition, and use a single sorting method or a joint sorting method according to the corresponding mineral properties. Only in this way can the beneficiation effect be improved.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.

10 best ore beneficiation plants for sale (with costs) | fote machinery

Before purchasing an ore beneficiation plant, people have lots of concerns: Which equipment I should choose to process my iron ore? Is this ore processing flowsheet best? Can these machines help me remove sulfur in iron ore beneficiation? Would they increase the recovery rate of tailings?

Then how to choose the right ore beneficiation plant depends on a lot of factors including physical properties of raw ore, capacity demands, final ore product requirements, geological situations of ore mines, and so on.

Here Fote Group would love to share valuable information about mining market trends, ways to build a high-quality ore beneficiation plant, and ten different ore processing plants which have been proved successful by our customers. If you have any most pressing questions and concerns, please contact our professional engineers who can make customized solutions according to your actual situation.

Our ore beneficiation plants sale to many countries, such as India, Australia, the USA, the UK, Canada, Switzerland, Philippines, Malaysia, Thailand, South Africa, Sudan, Egypt, Kenya, Indonesia, Nigeria, etc.

Nowadays, with ways of ore processing are getting more and more diversified and intelligent, the investment is not only limited to gold ore beneficiation but enlarged to many other items. From precious metals to coal, and to non-ferrous metals, investors can profit and bring more economic benefits to society.

Over 80 kinds of ores are widely used minerals in the world. Due to large output and high international trade volume, there are the several most common and important ores such as iron ore, copper ore, gold ore, bauxite, coal, lead&zinc ore, nickel ore, tin ore, and manganese ore, etc.

Nothing can replace iron ore in developing infrastructures as well as coal ore in the electricity industry, those ores making a great contribution to countries' economic growth. Gold ore mining ranks in a top position, attracting lots of investment for closed relations between the gold price and currency market.

The screening and crushing process is used to release useful minerals from the gangue. Different types of crushers reduce large sizes of raw ore into smaller ones, then vibrating screen with different mesh would help to get the desired size of ores. During the process, how many crushers need to be installed according to your real situation.

Usually, there are crushers with three crushing stages: primary crushers like jaw crushers, secondary crushers like cone crushers, roll crushers and impact crushers, tertiary crushers like compound crushers and fine crushers. Vibrating screens also have different types: Circular motion vibrating screens, horizontal Screens, high-frequency Screens, and trommel/ drum screens.

Only by crushers cannot get ore products with fine granularity, that's why mill grinding machines necessary in the beneficiation process. The mill grinding process is almost carried out in two consecutive stages: one is dry grinding (coarse grinding) and the other is wet grinding (fine grinding). The key grinding equipment are ball mills and rod mills, and the latter is now mostly used for wet grinding to finally produce fine and uniform ore products.

The beneficiation process is most crucial during the whole plant, helping people extract high value and pure ore concentrate products from ores no matter its grade high or low. The beneficiation process can be carried out in a variety of ways as needed but you ought to select a piece of optimal equipment to avoid inefficiency and waste in the entire process. The most common beneficiation equipment includes flotation machines, electrostatic and magnetic separators, and gravity beneficiation equipment.

Ore drying equipment may appear in any stage of a mineral processing plant (from raw ore-concentrate-finished product). The purpose of drying is to remove the moisture contained in the ore, ensuring the integrity of the product, and maximizing the value. In addition, drying process can also reduce product transportation costs and improve the economic efficiency of storage and processing.

With almost 50 years' extensive experience, Fote engineers are professional in integrating, designing, fabricating, commissioning, maintaining, and troubleshooting various beneficiation plants. The company aims to provide customers with the best mining equipment and the most reasonable beneficiation plants. Its final goal is to increase the potential profit that customers can obtain from the ore and enable mining companies to improve the overall profitability.

5TPH low-grade gold ore beneficiation plant in India 10 TPH gold ore beneficiation plant in South Africa 20-35TPH gold ore beneficiation plant in Egypt 10 TPH iron ore beneficiation plant in the USA 10-50TPH copper ore beneficiation plant in Pakistan 50-100TPH manganese ore beneficiation plant in Kenya 150TPH Bauxite ore beneficiation plant in Indonesia 50TPH lateritic nickel ore beneficiation plant in Philippines 200TPH zinc & lead ore beneficiation plant in Nigeria 250TPH chrome ore beneficiation plant in Russia

As a leading mining machinery manufacturer and exporter in China, we are always here to provide you with high quality products and better services. Welcome to contact us through one of the following ways or visit our company and factories.

Based on the high quality and complete after-sales service, our products have been exported to more than 120 countries and regions. Fote Machinery has been the choice of more than 200,000 customers.

hematite beneficiation technology,processing of iron mineral,ore grinding machine | prominer (shanghai) mining technology co.,ltd

With the rapid economic development, the iron ore resources of the concentrator are decreasing year by year, and the degree of "lean, fine and heterogeneous" of selected ore is obviously increasing, the supply conditions are becoming more and more demanding, the difficulty of sorting is increasing, and the process flow adapts to changes in the nature of ore The performance has been severely tested, and the trend of rising iron grades in tailings is widespread.

The composition of lean hematite ore is relatively simple and belongs to Anshan-style iron-bearing quartzite. The iron minerals are mainly hematite, false hematite, goethite, magnetite, and a small amount of limonite, siderite, and iron. Dolomite etc. Gangue minerals are mainly quartz, tremolite, actinolite, chlorite and a small amount of clay minerals.

2.Most of the ore structures are belt-like structures, and the structure is relatively simple. The shape of the minerals is relatively complete, with inclusion structure and crystal structure, etc., which affect the separation of the ore content.

3.The particle size of the iron mineral intercalation is about 75m, and the particle size of the gangue mineral intercalation is greater than 100m. This may be the result of sufficient recrystallization in the later stage. The iron mineral content of -10m is low. These characteristics make the content of lean conjoined organisms formed in the ore grinding process low. In summary, the ore is easy to be selected.

Focusing on the production process, that is, the process flow of stage grinding, coarse subdivision, heavy separation strong magnetic anion reverse flotation, in-depth and detailed analysis of the characteristics of the test process and the process parameters that are conducive to improving production indicators. The laboratory continuous selection test results show that under the condition of 24.52% of the original ore grade, the grade of gravity concentrate concentrate is 67%, the flotation concentrate grade is 67.5%, the strong magnetic tailings grade is 11.42%, and the magnetic tailings grade is 7.04%. The flotation tailings grade is 14.43%. The process flow of "stage grinding, coarse subdivision and separation, gravity separationstrong magneticanion reverse flotation" is used to separate poor hematite ore with comprehensive concentrate grade, which has strong adaptability to changes in the nature of the original ore In particular, it has strong adaptability to the status quo of low grade of raw ore and frequent changes in the initial stage of production.

Prominer Shanghai will continue to optimize the beneficiation process, improve process adaptability and provide a basis for stabilizing quality and reducing tails, comprehensively investigate the process flow of lean hematite ore beneficiation, and focus on analyzing the flow of ore materials to determine several major iron minerals in the process Summarize the location and reason of metal loss.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.

iron ore processing,crushing,grinding plant machine desgin&for sale | prominer (shanghai) mining technology co.,ltd

After crushing, grinding, magnetic separation, flotation, and gravity separation, etc., iron is gradually selected from the natural iron ore. The beneficiation process should be as efficient and simple as possible, such as the development of energy-saving equipment, and the best possible results with the most suitable process. In the iron ore beneficiation factory, the equipment investment, production cost, power consumption and steel consumption of crushing and grinding operations often account for the largest proportion. Therefore, the calculation and selection of crushing and grinding equipment and the quality of operation management are to a large extent determine the economic benefits of the beneficiation factory.

There are many types of iron ore, but mainly magnetite (Fe3O4) and hematite (Fe2O3) are used for iron production because magnetite and hematite have higher content of iron and easy to be upgraded to high grade for steel factories.

Due to the deformation of the geological properties, there would be some changes of the characteristics of the raw ore and sometimes magnetite, hematite, limonite as well as other types iron ore and veins are in symbiosis form. So mineralogy study on the forms, characteristics as well as liberation size are necessary before getting into the study of beneficiation technology.

1. Magnetite ore stage grinding-magnetic separation process The stage grinding-magnetic separation process mainly utilizes the characteristics of magnetite that can be enriched under coarse grinding conditions, and at the same time, it can discharge the characteristics of single gangue, reducing the amount of grinding in the next stage. In the process of continuous development and improvement, the process adopts high-efficiency magnetic separation equipment to achieve energy saving and consumption reduction. At present, almost all magnetic separation plants in China use a large-diameter (medium 1 050 mm, medium 1 200 mm, medium 1 500 mm, etc.) permanent magnet magnetic separator to carry out the stage tailing removing process after one stage grinding. The characteristic of permanent magnet large-diameter magnetic separator is that it can effectively separate 3~0mm or 6~0mm, or even 10-0mm coarse-grained magnetite ore, and the yield of removed tails is generally 30.00%~50.00%. The grade is below 8.00%, which creates good conditions for the magnetic separation plant to save energy and increase production.

2.Magnetic separation-fine screen process Gangue conjoined bodies such as magnetite and quartz can be enriched when the particle size and magnetic properties reach a certain range. However, it is easy to form a coarse concatenated mixture in the iron concentrate, which reduces the grade of the iron concentrate. This kind of concentrate is sieved by a fine sieve with corresponding sieve holes, and high-quality iron concentrate can be obtained under the sieve.

There are two methods for gravity separation of hematite. One is coarse-grained gravity separation. The geological grade of the ore deposit is relatively high (about 50%), but the ore body is thinner or has more interlayers. The waste rock is mixed in during mining to dilute the ore. For this kind of ore, only crushing and no-grinding can be used so coarse-grained tailings are discarded through re-election to recover the geological grade.

The other one is fine-grain gravity separation, which mostly deals with the hematite with finer grain size and high magnetic content. After crushing, the ore is ground to separate the mineral monomers, and the fine-grained high-grade concentrate is obtained by gravity separation. However, since most of the weak magnetic iron ore concentrates with strong magnetic separation are not high in grade, and the unit processing capacity of the gravity separation process is relatively low, the combined process of strong magnetic separation and gravity separation is often used, that is, the strong magnetic separation process is used to discard a large amount of unqualified tailings, and then use the gravity separation process to further process the strong magnetic concentrate to improve the concentrate grade.

Due to the complexity, large-scale mixed iron ore and hematite ore adopt stage grinding or continuous grinding, coarse subdivision separation, gravity separation-weak magnetic separation-high gradient magnetic separation-anion reverse flotation process. The characteristics of such process are as follows:

(1) Coarse subdivision separation: For the coarse part, use gravity separation to take out most of the coarse-grained iron concentrate after a stage of grinding. The SLon type high gradient medium magnetic machine removes part of the tailings; the fine part uses the SLon type high gradient strong magnetic separator to further remove the tailings and mud to create good operating conditions for reverse flotation. Due to the superior performance of the SLon-type high-gradient magnetic separator, a higher recovery rate in the whole process is ensured, and the reverse flotation guarantees a higher fine-grained concentrate grade.

(2) A reasonable process for narrow-level selection is realized. In the process of mineral separation, the degree of separation of minerals is not only related to the characteristics of the mineral itself, but also to the specific surface area of the mineral particles. This effect is more prominent in the flotation process. Because in the flotation process, the minimum value of the force between the flotation agent and the mineral and the agent and the bubble is related to the specific surface area of the mineral, and the ratio of the agent to the mineral action area. This makes the factors double affecting the floatability of minerals easily causing minerals with a large specific surface area and relatively difficult to float and minerals with a small specific surface area and relatively easy to float have relatively consistent floatability, and sometimes the former has even better floatability. The realization of the narrow-level beneficiation process can prevent the occurrence of the above-mentioned phenomenon that easily leads to the chaos of the flotation process to a large extent, and improve the beneficiation efficiency.

(3) The combined application of high-gradient strong magnetic separation and anion reverse flotation process achieves the best combination of processes. At present, the weak magnetic iron ore beneficiation plants in China all adopt high-gradient strong magnetic separation-anion reverse flotation process in their technological process. This combination is particularly effective in the beneficiation of weak magnetic iron ore. For high-gradient strong magnetic separation, the effect of improving the grade of concentrate is not obvious. However, it is very effective to rely on high-gradient and strong magnetic separation to provide ideal raw materials for reverse flotation. At the same time, anion reverse flotation is affected by its own process characteristics and is particularly effective for the separation of fine-grained and relatively high-grade materials. The advantages of high-gradient strong magnetic separation and anion reverse flotation technology complement each other, and realize the delicate combination of the beneficiation process.

The key technology innovation of the integrated dry grinding and magnetic separation system is to "replace ball mill grinding with HPGR grinding", and the target is to reduce the cost of ball mill grinding and wet magnetic separation.

HPGRs orhigh-pressure grinding rollshave made broad advances into mining industries. The technology is now widely viewed as a primary milling alternative, and there are several large installations commissioned in recent years. After these developments, anHPGRsbased circuit configuration would often be the base case for certain ore types, such as very hard, abrasive ores.

The wear on a rolls surface is a function of the ores abrasivity. Increasing roll speed or pressure increases wear with a given material. Studs allowing the formation of an autogenous wear layer, edge blocks, and cheek plates. Development in these areas continues, with examples including profiling of stud hardness to minimize the bathtub effect (wear of the center of the rolls more rapidly than the outer areas), low-profile edge blocks for installation on worn tires, and improvements in both design and wear materials for cheek plates.

With Strip Surface, HPGRs improve observed downstream comminution efficiency. This is attributable to both increased fines generation, but also due to what appears to be weakening of the ore which many researchers attribute to micro-cracking.

As we tested , the average yield of 3mm-0 and 0.15mm-0 size fraction with Strip Surface was 78.3% and 46.2%, comparatively, the average yield of 3mm-0 and 0.3mm-0 with studs surface was 58.36% and 21.7%.

These intelligently engineered units are ideal for classifying coarser cuts ranging from 50 to 200 mesh. The feed material is dropped into the top of the classifier. It falls into a continuous feed curtain in front of the vanes, passing through low velocity air entering the side of the unit. The air flow direction is changed by the vanes from horizontal to angularly upward, resulting in separation and classification of the particulate. Coarse particles dropps directly to the product and fine particles are efficiently discharged through a valve beneath the unit. The micro fines are conveyed by air to a fabric filter for final recovery.

Air Magnetic Separation Cluster is a special equipment developed for dry magnetic separation of fine size (-3mm) and micro fine size(-0.1mm) magnetite. The air magnetic separation system can be combined according to the characteristic of magnetic minerals to achieve effective recovery of magnetite.

After rough grinding, adopt appropriate separation method, discard part of tailings and sort out part of qualified concentrate, and re-grind and re-separate the middling, is called stage grinding and stage separation process.

According to the characteristics of the raw ore, the use of stage grinding and stage separation technology is an effective measure for energy conservation in iron ore concentrators. At the coarser one-stage grinding fineness, high-efficiency beneficiation equipment is used to advance the tailings, which greatly reduces the processing volume of the second-stage grinding.

If the crystal grain size is relatively coarse, the stage grinding, stage magnetic separation-fine sieve self-circulation process is adopted. Generally, the product on the fine sieve is given to the second stage grinding and re-grinding. The process flow is relatively simple.

If the crystal grain size is too fine, the process of stage grinding, stage magnetic separation and fine sieve regrind is adopted. This process is the third stage of grinding and fine grinding after the products on the first and second stages of fine sieve are concentrated and magnetically separated. Then it is processed by magnetic separation and fine sieve, the process is relatively complicated.

At present, the operation of magnetic separation (including weak magnetic separation and strong magnetic separation) is one of the effective means of throwing tails in advance; anion reverse flotation and cation reverse flotation are one of the effective means to improve the grade of iron ore.

In particular, in the process of beneficiation, both of them basically take the selected feed minerals containing less gangue minerals as the sorting object, and both use the biggest difference in mineral selectivity, which makes the two in the whole process both play a good role in the process.

Based on the iron ore processing experience and necessary processing tests, Prominer can supply complete processing plant combined with various processing technologies, such as gravity separation, magnetic separation, flotation, etc., to improve the grade of TFe of the concentrate and get the best yield. Magnetic separation is commonly used for magnetite. Gravity separation is commonly used for hematite. Flotation is mainly used to process limonite and other kinds of iron ores

Through detailed mineralogy study and lab processing test, a most suitable processing plant parameters will be acquired. Based on those parameters Prominer can design a processing plant for mine owners and supply EPC services till the plant operating.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.