ore that can be seperated by shaking table

small shaking table - jxsc machine

Capacity 0.2-1 t/h Feed size 0.30.074mm Application Small shaking table is used for gravity separation in the laboratory for ore selectivity research, experiment and small-scale gold plant beneficiation. Processible Materialfine grain ore and coal, rare metals, ferrous metals, non-ferrous metals, precious metals, etc.

Small Mining Shaking Tablealso known as mini shaker table, portable shaking table, is a mining laboratory equipment, which is smaller than the industry uses gold shaker table, suitable for school research, metallurgical testing and the small-scale concentrator which limited by the site. Modelsdeck material have glass fiber reinforced plastics (FRP) and alloy. Table surface groove have 46, 60, 80, 90, 110, 120 strips for coarse, fine, slime gold beneficiation requirements. Support for custom shaker table design. Application Gold vibration shaker table can effective separate 0.02-2mm coarse ore; slime grade tungsten, tin, ancestor, iron, manganese, chromium, chin, secret, lead, gold and other colored, black, rare metal minerals; 0.02-4mm pyrite; coal dust and slime. WarrantyOne year warranty, quality assurance, competitive price The vibration shaker table can be used not only as an independent mineral processing equipment but also combine with other mineral processing equipment such as jig, spiral separator, gold centrifugal concentrator. The shaking table is one of the main gravity separation equipment, shaking tables is widely used in the separation of tungsten, tin, tantalum, niobium, gold and other rare and precious metals. Industrial shaker table can be used for coarse sand (2-0.5 mm), fine sand (0.5-0.074 mm) and slime (- 0.074). A small shaker table can also be used to separate iron, manganese ore and coal. When tungsten and tin ores are treated, the effective recovery size range of the slime table is 2-0.22 mm.

Main partsThe main parts of the mini gold shaker table are the head, motor, slope regulator, bed surface, ore trough, water trough, rifled strip, and lubrication system. Working Principle of the Small Shaking TableThe ore dressing process of the vibration shaker table is carried out on the inclined bed surface with multiple strips. The ore particles are fed into the ore trough at the upper corner of the bed surface, and the lateral flushing water is supplied by the water trough. Under the action of inertia and friction caused by the asymmetric reciprocating motion of the bed surface, the bed surface is divided into layers according to specific gravity and grain size, and moves longitudinally along the bed surface and laterally along the inclined bed surface. Therefore, the ore particles with different specific gravity and particle size gradually fan down from side a to side b along the respective direction of movement, respectively from the concentrate end and the tailings side of the different areas of discharge, and finally be divided into concentrate, middling and tailings.

gold shaking table

A Gold Shaking Table are basically low-capacity machines used as last step in the gold upgrading process. Theshakingtable is a thin film, shear flow process equipment, that separatesparticlegrains of its feed material based on thedifferences in their specific gravity, density, size and shape. Mineral rich particles, from light to heavy and fine to coarse will be sorted by net effective weight. Finely crushed or ground ore material goes as feed mixed with water to form a pulp (mud) andfed as slurry of an average about 2025% of solids by weight onto the highest point of the table deck. The gold tables deck hasa reciprocal movement along its main axis that is given using a vibrator or an eccentric head motion. The table surface is manufactured and fitted with several tapered strips called riffles or grooves, often made with of yellow pine (way back in time that is), low-density polythene or aluminum surfacing.Shaking tables and other thin film separating plant recover finely divided gold under conditions of subcritical laminar and supercritical laminar regimes of flow, which may occur only where there is a very thin depth of fluid.

Agold shaking tables riffles taper downwards in elevation in the direction the gold (and all heavies), precious metals concentrate discharge end of the table. This facilitates the ease with which mineral particles can move transversal to the tables axis or shaker-line, therefore helpingseparation over the complete tablelength. Riffle heights and pattern designs are selected based on the desired and required duty/function expected.

Preparing several size fractions for tabling is usually achieved in a hydrosizer. Ifgold is present in both coarse and finely divided sizings at least three, or perhapsfour separate size fractions must be treated, each under a different set of operatingconditions. Tables operate most efficiently with a closely sized feed. The slurry fansout across a smooth section of the surface until it reaches the riffles. The lighterand very fine particles are washed over the riffles and moved along the riffles by thereciprocating motion imparted to the deck while the heavier particles are held back. The concentrates of heavy mineral and gold are discharged over the end of thedeck. Tailings are washed over the lower edge and a middlings fraction is taken offbetween the lower edge of the concentrate strip and the higher edge of the tailingstrip.

Wash water usage is dependent upon the particle diameter and varies from aslow as 0.7 m/t/h of solids for slime decks, up to 56 m/t/h for coarse solidsseparation. Coarse fractions are usually treated at feed rates of up to 1 t/h using approximately 15 to 20 mm stroke lengths at around 280 rpm (Wilfley table data). Thestroke lengths of finer fractions are reduced to 915 mm with increased speeds ofup to 325 rpm but, because of the corresponding lower film, thickness capacitiesmay fall to around 0.25 t/h. The inclination of the deck is adjusted during operationusing a hand-operated tilting device. It is important following each adjustment toallow the table operation to settle down before making a fresh adjustment. The correct inclination is reached when the ribbon of concentrates is clearly defined andremains steady.

The extreme sensitivity of water depths and corresponding current depths to obtain F = 1, and the use of stationary tables as primary concentrating units, was probably the main reason for the consistently low (R.E. 6065%) gold recoveries of early dredgers. For such table types, the fluid forces are applied to the stream-beds as a whole and ripples form, which keep the sand in orbital motion and provide for the denser particles to sink to the bed. Deposition is most favoured by anti-dune conditions produced by free-surface flow at or near the supercritical state. Such bed forms are in phase with the water surface and are produced in the rapid flow conditions of Froude Number F = 1. In this state of flow, the bed forms of the upper flow regime are stable. Below F = 1 the flow is tranquil and shear forces are reduced. In reviewing recovery distributions of certaindredgers it wasnoted that some coarse gold reported with the tailing after passing through two stages of tabling and that fine gold did not concentrate noticeably down the line.

I consider the gold shaker table to be a shaking sluice box OR self cleaning sluice as they both essentially are classifiers used as heavy gold concentrating devices. Apart from nuggets; generally the valuable minerals like heavy precious metals like platinumandpalladium thatcan berecovered by tables and sluices, are found in one size range (generally the finest) and the waste minerals in another. On agold sluice, large particles (gravel) travel by sliding and rolling over the riffles, with finer particles travelling by saltation. Sand travels by a combination of modes described earlier with some saltation over the riffles.Very fine particles are maintained in suspension by turbulent and inter-particle collision.

Riffles function properly only if in the space between them and the slurry is sufficiently live (turbulent) to reject the lighter particles, but not so lively that the gold cannot settle. On a gold shaker table, those particles are allowed to settle as they will get transported to the other end by the vibrating/shaking back-and-forth motion. Lower grade, light pieces, will be able to escape the table a the riffles becomes shorter along the tables length.Once the particle has started to move, the coefficient of friction changes to a dynamic coefficient of friction. In fact, because the fluid push on the particles is larger at the top of the particle than at the bottom, the particle rolls, largely according to the shape of the particle and according to the speed. At low speeds, the effective friction is the relatively large coefficient of dynamic sliding friction, and at high speeds it is the lower coefficient of rolling friction. The change probably takes place partly continuously and partly discontinuously. As a first approximation, the dynamic coefficient of friction may, however, be regarded as constant.

In a sluice box, the settling of heavy minerals between the riffles requires frequent stirring to prevent the riffle spaces from blinding. This also disturbs the gold, which then moves progressively down-sluice. Frequent clean-ups are needed to avoid excessive loss. Boxes may be used in parallel to avoid loss of production time. One box is kept in operation while cleaning up in the other.

Effect of Deck Roughness: The foregoing analysis is based on the postulate that the deck is perfectly smooth. If the deck is rough, i.e., if it has at its surface some recesses capable of partly shielding fine particles from the rub of the fluid, the slope required to move the particles by either rolling or sliding will be increased. At the same time such an effect, while present also for large particles, may be so much smaller for them as to be imperceptible. The relationship of critical angle to size obtained above will therefore not hold for rough surfaces. The problem is analytically complex and it is nevertheless a problem that might well be explored further if a full insight is desired into the mechanism of flowing-film concentration.

Adjustments are provided in all tables for the amount of wash water, the cross tilt, the speed, and the length of the stroke. The speed of the table ranges usually from 180 to 270 strokes per minute, and the strokes are from 1/2 to 1 1/2 long.

Variations in character of feed require variations in operation. The operators duty is to take care of them by adjusting the tilt, the wash water, and the position of the splitters that control discharge of table into concentrate, middling, and tailing launders. One man may look after 10 to 100 tables, depending upon the regularity of the feed and the difficulty of the task assigned to the table.

A coarse feed can be treated in larger amounts than a fine feed. It would seem that the treatable tonnage increases at least as the square of the average size (theory indicates that it increases as the cube of the particle size).

A roughing operation is preferably conducted on a fully riffled deck. These decks have a greater capacity because the particles are treated throughout the deck in the form of a teetering suspension many particles deep instead of as a restive layer one particle deep. Such decks do not provide flowing-film concentration but some sort of jigging. On the other hand, a cleaning operation is preferably performed on a partly riffled deck.

It is clear that minerals of different specific gravity must be present the greater the spread in specific gravity between minerals, the greater the capacity since that sort of condition permits crowding without considerable penalty.

The effect of locked particles on capacity of tables should also be recognized. These particles behave in a fashion intermediate between that of pure particles of their constituent minerals. It is as if a three-product separation were sought in which one of the products would guide-in specific gravity between the two other.

Table capacity may be as high as 200 tons per 24 hr. on a fully riffled deck 4 by 12 ft. treating minus 3-mm. sulphide ore having a specific gravity of about 3.0 (roughing duty), or 500 tons per 24 hr. But table capacity may be as low as 5 tons per 24 hr., or even less, for fine ore (minus 0.3 mm.) if there is only a small specific-gravity differential between minerals.

Operating a shaking table is cheap as power requirement per table are typically low. Most of the energy is expended to move the deck, which must therefore be as light as is consistent with rigidity. Laboratory gold shaking table testingreport.

There are a few steps that need to be taken in order to get yourgold shaker table to work efficiently. The first step that aspiring gold miners must take would be to make sure that all four corners of the table are level from forward to back. It is very important to anchor the bolts so that the shaking of the gold goes to the table and not through the frame. After you begin running your table, you may need to adjust your table from side to side to maintain an even flow of materials on both sides of the table.

A gold shaker table contains a water access point where you can fill it with clean water, which can be seen right under the control area. Alternatively you can directly fill the tank of the shaker table with clean water. The water access point allows you to connect a clean water system through a garden hose. The valve that is right behind the tank is then turned off and the pump system is not running during the process of running fresh water. When clean washing water is distributed at the top of the table at right angles, particles are moved diagonally across the deck and separate from each other according to their size and density. During the fast shaking process, you will gradually begin to see the separation of materials. For example, when you have dirt and rocks that contain materials like lead, sulfides and gold, because of the varying weights of these different materials, you will see these materials venture off in different directions on the shaker table. The lead and the sulfides will be carried over to the right side of the table while the pure gold will be carried over to the far left side of the table.

There is one term to remember when professional gold miners describe the actions of a gold shaker table. When professional gold miners say that small particles of gold are being carried through the grooves, they are referring to the ripples that you can plainly see on the shaker table. When they say that there is an overflow of materials like Black Pyrrhotite, White Quartz, silver and gold on the grooves, then this is a good thing.

When materials are washed by the clean water they are supposed to drop into 3 hoppers/launders underneath the table. There is a centre launderthat will gather the purest portions of gold while the two outside launders will gather some gold, though not as much.

It is crucial to remember to plug the cable of your shaker table into a GFCI (Ground Fault Circuit Interrupter) outlet. Most shaker tables will not work if they are plugged into any other kind of outlet.

In aPercussion Gold Shaker Table,the work of keeping the pulp in a state of agitation, done by the rakes or brushes in the German and Cornish buddies described above, is affected by sudden blows or bumps imparted sideways or endways to the table. The table is made of wood or sheet metal, the surface being either smooth or riffled.

End-bump tables are hung by chains or in some similar manner, so as to be capable of limited movement, and receive a number of blows delivered on the upper end. These blows are given by cams acting through rods, or else the table is pushed forward against the action of strong springs by cams on a revolving shaft, and then being suddenly released is thrown back violently by the springs against a fixed horizontal beam. The movement of the pulp depends on the inertia of the particles, which are thrown backward up the inclined table by the blow given to the table, the amount of movement varying with their mass, and depending, therefore, both on their size and density. The vibrations produced by the percussion also perform the work of the rakes in destroying the cohesion between the particles, and a stream of water washes them down. The result is that the larger and heavier particles may be made to travel up the table in the direction in which theyare thrown by the blow, by regulating the quantity of water, while the smaller and lighter particles are carried down. These machines yield only two classes of material, headings and tailings. One such machine, the Gilpin County Gilt Edge Concentrator was devised in Colorado, and has displaced the blanket sluices atalmost all the mills at Blackhawk. It consists (Fig. 46) essentially of a cast-iron or copper table, 7 feet long and 3 feet wide, divided into two equal sections by a 4-inch square bumping-beam. The table has raised edges, and its inclination is about 4 inches in 5 feet at its lower end, the remaining 1 feet at the head having a somewhat steeper grade. The table is hung by iron rods to an iron frame, the length of the rods being altered by screw threads, so as to regulate the inclination to the required amount. A shaft with double cams, A, making 65 revolutions per minute, enables 130 blows per minute to be given to the table in the following manner; onbeing released by the cam, the table is forced forward by the strong spring, B, so that its head strikes against the solid beam,C, which is firmly united to the rest of the frame.

The pulp coming from the copper plates is fed on to the table near its upper end by a distributing box, D, and is spread out and kept in agitation by the rapid blows. Thesulphides settle to the bottom of the pulp, and are thrown forward by the shock, and eventually discharged over the head of the table at the left hand of the figure, while the gangue is carried down by the water and discharged at the other end. One machine is enough to concentrate the pulp from five stamps. If the table consists of amalgamated copper plates, it is of some use for catching free gold also, treating about 8 cwts. of ore per hour. This machine is not so effective in saving slimed pyrites as the Wilfley table or the vanners.

Gold shaker tables are environmentally friendly (chemical free) for recovering pure gold as they can play an important part in reducing the use of mercury by gold miners. With gold shaker tables miners dont need to resort to mercury amalgamation or cyanide to recover gold. The filter will constantly need to be removed and cleaned as it will get dirty even after using the table a few times.

Miners can design and construct a basic shaking table out of cheap materials that are affordable in local stores, including a drive mechanism that contains bicycle gears, chains and rubber bands that are made from car tire inner tubes. The drive mechanism for a gold shaker table can be a hand crank or it can contain parts of a motorcycle frame and engine. If one prefers to use a motor for his or her table, either an electric motor or a motor that runs on diesel fuel would be the ideal options.

It is important to keep in mind that there is no one specific way to create your own gold shaker table system. Many professional gold mining organizations will create tables of different shapes and sizes to cater to the needs of their customers. Some shaker table systems will feature machines that can crush hard rocks, which are referred to as jaw crushers. The speeds of shaker table systems will vary as they can shake from hundreds to thousands of pounds of materials per hour.

gold shaker table sales,shaking table,gold separator - jxsc

The gold shaker table is a flow film separation equipment, that usually used to separate the gold particle grains from the ore material in the gold processing plant. Shaking table concentrator is developed from the early stationary and movable chute box, from percussion shaking table ( used in the coal mining industry) to the wilfley table and mineral processing eccentric rod shaker table, various type of gravity table separators have been developed and applied, especially in the recovery process of some precious metal like gold. Contact us to get the latest shaker table price.

Capacity: 0.1-2tph Feeding size: 0-2mm Applications: Gold, Tin, Chrome, Tantalum-niobium, Tungsten, Iron, Manganese, Nonferrous metal ore, and so on. Introduction: Gold shaker washing table can obtain the fine-grained materials, and separate the high-grade concentrate, taillights and intermediate mineral products during once processing. According to the different grain size of the ore material, it can be divided into coarse sand (2 - 0.074mm), fine sand (0.5 - 0.074mm), and ore slurry (0.074 - 0.02mm), the suited gold separate machine is varied with the material particle size, the main differences among them are the shaking table surface sluice, height, angle and so on. Main parts: table head, motor drive, stand, working bed, support frame, water tank, feed chute, angle adjuster device, spring, etc.

Types of shaking table: 1. Shake table for sale classified by uses: ore sand, ore slurry, mineral processing, coal dressing. 2. Classified by structure ( table head, surface, supporting frame ): 6-S shaker table, Gemini table, CC-2 gold wash table, spring concentrating table, centrifugal table, rp 4 shaker table, and so on shaking table mineral separation. 3. Classified by deck: single deck shaker table, the multideck table has double decks, three decks, four decks, six decks, and more.

Working principle of the shaker table: As a gravity separator machine, the shaking table separates the minerals mainly dependent on their differences of gravity, density, shape, etc, in addition, the water flow speed, slurry density, surface angle and so on variables also matters. The target mineral grains, from fine to coarse and light to heavy, can be classified by weight. The shaking table concentrator not only can be an independent beneficiation machine, but also connect with jig machine, flotation, magnetic separator, centrifuge concentrator, spiral concentrator, belt conveyor and so on.

Mining Equipment Manufacturers, Our Main Products: Gold Trommel, Gold Wash Plant, Dense Media Separation System, CIP, CIL, Ball Mill, Trommel Scrubber, Shaker Table, Jig Concentrator, Spiral Separator, Slurry Pump, Trommel Screen.

shaking tables, knudsen bowl

For gold operations we design and manufacture the MD Gemeni range of Shaking Tables. Specifically designed to produce a gold concentrate that can be directly smelted to bullion, the Gemeni Shaking Tables are a cost effective solution.

The Mk2 features a direct, fixed speed drive system and can be operated in batch or continuous mode. The MD Gemeni Shaking Table range is almost invariably used for retreating concentrate from sluices, spirals, conventional shaking tables and centrifugal separators

Mineral Technologies supplies Holman Wilfley wet shaking tables for recovery of precious metals, copper wire, synthetic diamonds, chromite, heavy mineral sands and gold. The different models process feed streams of between 5 and 2,500kg per hour. Holman models are available for all fine minerals concentration (e.g. mineral sands, tin, tungsten, chromite, gold). Wilfley model 7000 is available for metal recycling and reprocessing of WEEE materials (Waste Electrical and Electronic Equipment).

Mineral Technologies designs and manufactures the MD Knudsen Bowl. Specifically designed to recover gold from alluvial or hard rock deposits, upgrading and recovery of gold from concentrates from other gravity separation stages, exploration and evaluation of gold deposits ,and other mineral applications including cassiterite and scheelite.

mathematical modelling of wet shaking table applied to plastics separation - sciencedirect

Wet shaking table can be applied to the separation of plastics with a specific weight higher than 1g/cm3. Its effectiveness is considerably affected by process feed characteristics and operating conditions. Its control relies on the availability of a mathematical model. To build up an adequate model, an extensive experimental program was performed with different mixtures of three plastics PET (Polyethylene Terephthalate), PS (Polystyrene) and PVC (Polyvinyl Chloride), coming from packaging wastes. The Weibull function was adjusted to the cumulative distribution of the material over the discharge edges.

shaking table|gravity shaking table|small gold shaking table price|concentrating table-henan fote machinery co., ltd

Dressing table is also called gravity shaking table. The shaking table can make mineral particles move according to their density and particle size varies along different directions, and from the beginning of the mine shafts fanning out along the diagonal, followed by discharge along the edge of the bed, and the discharge line is very long.

The shaking table is able to estate a variety of different quality products such as concentrates, secondary concentrates, the concentrates and tailings. The shaking table working as the concentrating table is used for the separation of fine materials with the particle size smaller than 2-0.2mm such as tungsten, tin, niobium, chromium, lead, zinc, gold and iron(hematite and limonite) etc.

Shaking table usually consists of three major beds, chassis and transmission mechanism. In addition, there are red sink, mine shafts, base, etc.. The entire bed supported by a rack or lift, slope adjustment device fitted on the rack.

The magnetic separation process, also named the magnetic separating production line and made up of jaw crusher, ball mill, classifier, magnetic separating equipment, concentrator and dryer, is a wet and dry separation combination method of magnetite.

The flotation separation process also known as the flotation separating production line realizes the mineral particle separation based on the working principle of different physical and chemical properties of the minerals leading to different floatability.

Henan Fote Heavy Machinery Co., Ltd.,the former Henan First Machinery Factory,founded in Henan Zhengzhou- China machinery manufacturing capital in 1982,is a large joint-stock company specialized in manufacturing heavy mining machinery and civilian machinery; it has six production bases with an area of 240,000 m, more than 2000 existing employees, 160,000 m standardized....

shaking table

Shaking table also called concentration table,table concentration, gold tailing recycling machine,gold concentrator,which is one of the mineral separation equipment of gravity concentration.It is widely used to separate tungsten, stannum, niobium, other rare metal and noble metal ores; it can also be used to separate iron, manganese minerals, coal, and so on It is easy to be operated and can produce high grade concentrated ore, secondary concentrated ore, middlings and gangue, etc at the same time.

The working principle of this machine is to use the combined action of the specific gravity difference of sorted minerals, alternating movement of bed surface, and transverse oblique water flow and riffle (or notch groove), to allow loose layering of ores on the bed surface and fan-shaped zoning. Then different products can be produced.

This machine is composed of three parts, i.e. head of shaking table, surface of shaking table, as well as bearing and adjusting gradient. 1. Head of shaking table: This is eccentric connecting-rod type mechanism. The motor drives the eccentric shafts to rotate and the connecting rod to move up and down. When the connecting rod pushes down the toggle plate compression spring, the pull rod drives the table surface to move in the direction of table head. When the connecting rod pushes it upward, it, through the spring tension, drives the table surface to move in the opposite direction. When they are linked, the rotating motion of eccentric shaft is changed into horizontal alternating differential motion of table surface.

gravity separation of heavy minerals - a mineral processing technique

To perform Gravity separation of heavy minerals in the range 600 microns to 12 microns and to simulate gravity recovery performance on a sample hoping recovery and grade achieved can by higher than in plant operation, will let you analyze the grade/recovery curves permitting a relative assessment of performance.

You will use a superpanner as it is a completely integrated machine which only needs suction lines to draw off concentrate tailings. The superpanner can simulate the hard knocking action of a shaking table or the gentle washing of a panner.

A 50 gram maximum of sample is recommended for the U-shaped deck of the superpanner. The superpanner itself has the ability to rock sideways and tilt in the horizontal. The knock that is applied to the end of the deck is like all other motions in that the degree of motion needed can be varied. The speed of the motion sideways and the interval of the knock can also be controlled. It is very important that water additions throughout the separation are such that the solids are kept in solution and that dry beds do not appear, thus hindering separation. Normally the deck starts in the horizontal with a hard fast knock and no side motion. It is hoped by this arrangement that the heavy mineral will fall through the sample onto the bottom of the deck (much like a jig).

Once the heavy mineral is separated from the remainder of the sample it can collected into the concentrate holding bottle by means of the vacuum system. Tailing are normally taken off throughout the separation and re-superpanned several times. This enables production of a rougher concentrate with the final tail free of liberated cassiterite. The rougher concentrate can then be put back on the deck and a super concentrate of the highest possible grade removed (minimum weight approximately 0.2g). Subsequently the remaining rougher concentrate may be re-superpanned and spread out along the deck of the superpanner where it can be split into three separate concentrates depending on S.G. (that is the proximity to the concentrate end of the deck). In the finer fractions it should be possible to attain the liberation size of the heavy mineral and recovery should hence be high. In the coarser fractions, however, high recovery is not always obtained because of unliberated cassiterite.

Note: High recovery and grade can only be achieved if the heavy mineral is liberated. The ability to quickly visually identify the heavy mineral and considerable operator patience are important attributes for high recovery.