processes in the grinding mill in gold processing

using ball mills to extract raw gold from ores

Placer mining and lode mining are very different. Whereas placer gold has been released from within the rock and is generally free from any significant matrix, lode gold presents different challenges. While gold may be present in ore, it must somehow be released for proper extraction.

As a result, a number of machines have been invented to bring about maximum results with regard to obtaining the much needed resource, gold. One of such equipment is the ball mill. Below is the write-up of how a ball mill works, is used to crush ore and an explanation regarding its effectiveness in gold mining.

First of all, in order to get the best out of how this particular equipment is used it is important to get acquainted with knowledge on what it is, and is made of. Hence, a mill is a piece of equipment used to grind ores. Its major purpose is to perform the grinding and blending of rocks and ores to release any free-gold that is contained within them.

At major mines, the mill was the critical equipment that was required to process the ores that were extracted from deep underground. Many early mines used stamp mills, but many operations today find that ball mills are more functional for smaller operations and perform well with the modern equipment we have available now such as combustion engines.

To perform its functions, the ball mill operates on the principle of impact and attrition. This principle entails that the balls are dropped from near the top of the shell in order to bring about size reduction impact.

The major components of the ball mill include a shell that is hollow and is suspended on its axis to bring about rotation. The axis of the shell can be suspended horizontally or at an angle to the horizontal.

The shell is filled with quite few, but reasonable amount of balls which do the grinding process, and can be made of steel such as chrome steel and stainless steel. They can also be made of ceramic or rubber depending on their targeted material to be ground.

Its major operations are categorized into two, namely the dry and wet processes. Through those processes the machine is able to perform its functions of grinding the crushed materials. One of such functions, is that which is witnessed when grinding different types of ore, such as gold ore.

Now here is what one must know with regard to how the ball mill operates. The drum of the mill (shell) is suspended on two self-aligned rollers. Then the material to be worked on is loaded through the hopper.

From there, the mill is driven using a motor with a clutch, gearbox and the flexible coupling. The mill is then lifted to a certain level of height as it rotates. It is from that height that the balls begin to freely fall or roll down in order to grind the material that has been loaded.

After the material is ground, it is then removed from the mill depending on the discharge method used on the machine. For example, there are center unloading mills as well as unloading through the grille mills.

For the center unloading mills, the ground material is discharged through a hollow unloading trunnion using a free sink. To make it more efficient the pulp level in the drum should at least be above the level of the lower generating trunnion for unloading.

On the other hand, mills whose unloading is done using the grid consist of a lifting device which helps to unload the crushed material. For this reason, in such a mill the slurry level is likely to be lower compared to the unlading trunnion level. In such a mill, a grid with openings used for unloading crushed material is located in the unloading end of the drum.

To crush the gold ore in order to obtain pure gold, the large ore of gold is fed into a jaw crusher or mobile jaw crusher for the primary crushing process. The crushing process acts as a medium of screening the fine gold ore. It is then sieved using the vibrating screen and later sent through the use of a conveyer belt.

The ore is sent into a single-cylinder hydraulic cone crusher for the secondary crushing. Thereafter, the gold ore is transferred to a multi-cylinder hydraulic cone crusher, where the ore is crushed further into finer material. From there, the crushed gold ore is sent to a ball mill, evenly as it passes through a vibrating screen for grinding.

From the ball mill, the gold ore powder is subjected to the process known as beneficiation for further crushing before classification and floatation processes. Most commonly, professional mining operations will use a shaker table at this point. These are extremely effective at capturing tiny particles of free-gold that has been released from the ores.

limestone processing plant in lithuania | prominer (shanghai) mining technology co.,ltd

2.Uneven grinding and feeding. The original electromagnetic vibration feeder used for grinding is too small, and the feeder is often blocked, and the amount of ore fed fluctuates, which affects the grinding efficiency.

3.The large eccentric force of the single spoon head feeder of the first stage grinding machine causes the ball mill to run unsteadily, the tile seat vibrates violently, the current is large and small, the operating current is 140~80A, the fluctuation range is large, and the spoon head wears relatively Fast and high frequency of replacement.

4.With the annual reduction of open-pit oxide ore, the proportion of primary ore is increasing year by year. Primary ore is more difficult to grind than oxide ore, which affects the fineness of grinding. The steel ball ratio is unreasonable, and the grinding potential of the mill is not fully realized.

5.The raw slurry pump of the grinding system has high speed, severe impeller wear, short maintenance period, and low slurry pumping capacity; when the grinding capacity increases, the pumping is not timely, which often causes the slurry to overflow from the sand box.

6.The thickener of the grinding system is too small, basically unable to play the role of thickening. The thickener currently used in the grinding system is 5.18m, the slurry concentration discharged into the thickener by the cyclone is about 39%, and the concentration of the thickener discharged is about 40%; here the thickener has little thickening effect, and its effect is equivalent In a slurry buffer tank.

7.Coarse-grained gold accounts for a relatively large proportion. The annual output of heavy placer gold in the gold ore dressing plant accounts for about 25% of the annual gold output. When the coarse-grained gold enters the leaching system, the process flow cannot be satisfied due to the long leaching time required, which further affects the tailings and tailing liquid indicators.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.

china jaw crusher manufacturer, ball mill, shaking table supplier - jiangxi hengchang mining machinery manufacturing co., ltd

Jaw Crusher, Ball Mill, Shaking Table manufacturer / supplier in China, offering High Efficient Gold Recovery Machine Alluvial and Placer Gold Mining Equipment Sand Gold Separation Recovery Plant, 1 Ton Ball Mill for Rock Gold Mining Grinding Plant 900 X 1800 Ball Mill for Gold Grinding Plant, Factory Price Grinding Process Stone Gold Ore Ball Mill Rock Stone Gold Grinder Ball Mill Grinding and so on.

Jiangxi Hengchang Mining Machinery Manufacturing Co., Ltd. is located in No. 3 Chuangye Road, Industrial Park, Shicheng County, Ganzhou City, Jiangxi Province, China. Our company is engaged in providing the complete mineral processing equipment research, development, design and production from1985 years, So we have accumulated rich experience in design and production. Enterprise in mineral processing equipment industry has had a positive effect, set up the good reputation. And mainly the manufacture of ...

vertical roller mills: the new leader in grinding technology

Historically the reefs were rich and large profits were made with ordinary recovery circuits but today mines are dealing with complicated ores that require fine grinding to allow a 92% 98% recovery rate just to stay in the game.

Being well established in the cement industry with a 55% market share worldwide, the company has taken the proven design concepts and adapted it to the ore industry, specifically gold, copper, phosphates and iron. To support the equipment, Loesche has a team of highly qualified staff dedicated to ensuring customer service and satisfaction is achieved.

The particle size is critical for a sufficient degree of mineral liberation to expose the mineral and the grindability of the ores fluctuate, hence the beneficiation process and especially the comminution process must be flexible.

Dry and wet grinding technologies were compared in terms of grinding performance and product quality. Through significant laboratory work done, improved flotation performances of dry ground products have led to the design of a completely new beneficiation process.

The Loesche VRM has adaptable grinding modules which are already proven to be the way forward in other mining industries, allowing for variant mineral ores to be milled efficiently to the required particle size.

The VRM, depending on the roller size, has a high reduction ratio; feed from 80 mm to 140 mm to a product of P80 at 75 m in one pass, the mill is a closed circuit on its own having the comminution and classification of product in a single machine.

Sulphide copper-gold ores are usually sorted by flotation. The standard comminution process to grind the ore to flotation fineness, mostly consists of coarse crushing followed by SAG milling or wet ball mill circuits, or alternatively multiple stage crushing followed by rod and ball milling.

The two most common compressive comminution technologies are the high pressure grinding roller (HPGR) and the vertical-roller-mill (VRM). For now, the HPGR has already presented in a noteworthy number of mining projects whereas VRM technology, a new entrant, is still not fully accepted.

This is considered a resistance to change considering that VRM technology has a clearly dominant position in classical dry, compressive comminution applications like grinding of cement or granulated blast-furnace slag.

The VRM produces a steeper particle size distribution, reducing wastage in the form of ultra-fines and oversize, by this the VRM allows for a good flotation size range having more particles exposed to the floatation process.

Loesche VRM comminution technology is a particle on particle in bed grinding principle, cracking the ore on the mineral lines to expose more minerals to the floatation process with very low specific wear on the liners to produce cleaner concentrates.

Dry product allows for a surge silo to operate between the comminution and recovery circuits which ensures accurate, constant feed. This consistent flow with cleaner concentrates reduces reagent consumption.

By this a smaller footprint can be envisaged, reducing water absorption and evaporation. Increased water reclamation and less pollutants will be experienced affecting the nett operating expenditure to process a ton of ore.

Challenges from the strict environmental regulations have allowed Loesche VRM technology to become the future in comminution, enabling mining houses to operate in previously difficult conditions not suited to wet processes.

The OGP is a modular containerised comminution circuit laboratory where a Loesche milling specialist will be on hand performing various grinding tests until the optimum solution is reached for downstream processes.

gold milling process -primitive and basic

At the time, 1890, the Author said There is, of course, nothing for us to learn from this imperfect and rudimentary gold-extraction process described here, which is doubtless destined to disappear ere long, before the progress of scientific mining, now making itself slowly felt throughout the far East. I think it advisable, however, to put on record all such crude efforts, if only to enable us to trace more completely the evolution of our modern systems of mining, and to teach us by what widely-divergent methods different races of mankind have attempted to solve one, apparently simple, problem.

Their method of mining was then, and is now, the following: A small water-furrow is first brought in at the highest possible level on a suitable hill-side, and the stream is turned down the hill. By means of a heavy long wooden crowbar, shod with a long strongly- made chisel-pointed iron socket, and with the help of the stream of water, which rarely exceeds 50 cubic feet per minute, the surface- soil and weathered country-rock are loosened and sluiced away. No trouble is taken to save any of the gold washed down, except in one or two instances where rude riffles have been inserted in the tail-race; the race is, however, carefully searched for bits of quartz showing visible gold, which are picked out and put on one side. The surface of the shales is thus stripped, and any veins of gold that may be laid bare are then worked. The principal mining- tool is a rough kind of pick, and the use of explosives, or even of wedges, is quite unknown. Neither shovels nor barrows are used ; their places are taken by broad hoes and baskets, a pair of the latter, swung at each end of a stick and holding at least 70 pounds, being easily carried up steep grades by a Chinese miner. The tunnels, small and irregular, usually incline steeply upward ; they are rudely timbered, and as timber decays rapidly in this climate, these workings cannot penetrate far into the hills, but soon have to be abandoned, and the whole series of operations has to be recommenced.

A party of 27 miners, who owned and worked a rich hillside, considered themselves to be doing well when their entire days output (they do not work night-shifts as a rule) was a little over half a ton of quartz. The quartz, as extracted from the reef, is cobbed down with hammers to about pass a 1 J-inch ring, and is then carefully hand-picked, all stone showing visible gold, sulphurets or any other favorable indications being sent to the mill and the restbeing thrown away. From one-eighth to one-half is thus rejected. I have assayed many samples of this refuse rock, which carries from 3 to 10 pennyweights of free milling gold to the ton, so that it is quite worth milling according to our modern ideas.

At first the mode of crushing adopted by the Chinese consisted in heating the rock red-hot, quenching it in water and then pounding it down and rubbing it between two stomps. About 35 years ago atilt-hammer, made entirely without iron and having a stone head, was introduced, and is still much used by individual miners. About twelve years ago the battery of three to six hammers, worked by a water-wheel, was first employed. It is said to have been copied from mills for crushing the materials of joss-sticks. Tilt-hammer rice-mills are also built. Such water-mills are usually the property of a party of miners working together.

The foot-mill shown in Figs. 1 and 2 is of the usual type, from which there are but few unimportant departures. The entire falling weight is about 45 pounds, and the length of drop about 20 inches; as a rule, these mills are worked at 15 to 20 blows per minute.

The mill shown is built entirely without iron; the stone that forms the base of the mortar is a piece of hard quartzite or of barren reef-quartz, the same material being used for the hammer-head, which is firmly held in its socket by wooden wedges, the socket being kept from splitting by a stout hoop of rattan twisted round it. Some of the mills use iron hoops, and some have iron spindles for the hammer to work on; with these exceptions and one or two other very unimportant details, the construction is always the same, though the dimensions may vary a little. There is scarcely a house in the whole district that has not one of these mills.

The Chinese usually work these mills for about eight hours per day. A shovelful of quartz is first thrown into the mortar and the mill is then worked by the foot of the miner, who stands on one or other of the stones shown in the drawings, grasping the uprights or else a cross-bar that is sometimes fastened across them.

When the quartz is supposed to be crushed sufficiently fine, the hammer-head is propped up, and the crushed stone is scraped out and sifted through a circular sieve 15 inches to 20 inches in diameter, and about 1J inches deep. The sieve itself is made of thin strips of rattan about 0.1 inch in width. There are from 36 to 40 holes per square inch, so that the width of mesh varies between 0.04 and 0.06 inch. A man can crush in a working day, with one of these mills, from 70 lbs. to 140 lbs. of stone, according to its hardness.

The number of heads in a power-mill varies between 3 and 6, depending principally on the quantity of water available. As the district is well watered, the large majority are 6-stamp mills; out of 11 power-mills which it contains, 8 are 6-stamp mills. Figs. 3 and 4 show the usual type of the latter mills, from which pattern there is practically no departure. I could not even induce the Chinese to try a curved cam instead of a straight one, as they seemed to consider such innovations dangerous ; and they added that wood and water were both cheap enough. As will be noticed, the construction of the water-wheel is extremely crudethe water, which issometimes brought down very steep hills from considerable heights in small, highly-inclined ditches, strikes the flat buckets with considerable velocity, so that the wheel is partly an impact and partly a pressure wheel; the buckets are never more than half-filled at the best, and the wheel is sometimes allowed to wade in tail-water to the full depth of the shrouding. Much power is accordingly wasted, the amount of water consumed in driving one of these mills beingfrom 80 to 100 cubic feet per minute. The average number of drops of each head varies between 27 and 32 per minute; the length of the drop is about 2 feet, and the effective falling weight of the head is about 70 lbs. Thus only about one-third of the theoretical power of the water is utilized, but of course much of this loss of energy is due to the friction of the whole machine, notably between the straight cam and the tailpiece of the hammer. There are usually 3 men per shift working one of these mills, 2 being engaged in looking after and feeding the machine, while the third sifts thepounded stone as already described, throwing back under one of the hammer-heads whatever will not pass the sieve.

The cost of one of these mills complete, including a substantial shed over it thatched with palm leaves, but excluding the water- furrow, is said to be about very little, and they are supposed to last from 5 to 7 yearsneeding, however, constant repairs.

A stone hammer-head lasts from a week to a month, according to its quality. They are made, as in the foot-mills, from boulders of quartz rock, and it is mostly one mans business to search for these boulders in the bed of the stream, and, when found, to dress them into shape.

I tested the degree of fineness to which these mills reduce the quartz by differential siftings of a number of samples, taken by spoon-sampling the heaps of crushed ore lying at various mills. The results of some of my tests are given in the following table :

It appears from the above table that a great deal of the ore is crushed very fine (too fine, indeed), while some is not fine enough. As about 40 per cent, of the ore will pass through a 6,400 sieve, there must be much over-stamping, resulting, no doubt, in the production of a great deal of float-gold and slimes.

After the mill has been running for a longer or shorter period, according to circumstances, a clean-up takes place. The crushed ore is carried out in large wooden pails to a Chinaman, who washesit, squatting down by the side of a square pit, through which a small stream of clear water is kept running. The implement used for washing is a flat, somewhat conical wooden dish, cut from the spurs of certain hard-wood trees, and fashioned with much care. It is known as the dulang, and much resembles the Spanish-American batea, except that the section of the former is that of a very obtuse rounded cone, while the section of the latter is approximately that of a sphere.

A section of a typical dulang is shown in Fig. 5. Much importance is attached to the correct shape of the conical point, as it is in this that the precious metal is gathered together. The dulang is filled with from 10 to 15 lbs. of crushed stone, according to its size, and this is washed by a curious circular, combined with a slight undulatory motion, by which the particles of light, barren quartz are swept over the edge of the dulang, which is held just dipping below the surface of the water in the pit, while the heavier particles are collected in the rounded apex of the cone. When nearly cleaned, the gold and concentrates are transferred to a smaller, very carefully made and polished dulang, about 1 foot in diameter, in which thequartz is washed off as thoroughly as possible, and the gold, by a skillful jerk, is thrown clear from the sulphurets, and finally collected in a small brass dish. The sulphurets still retain much coarse gold, to which they cling obstinately. They are ground as fine as possible on a stone and re-washed several times, a good deal of the gold being thus separated and added to that previously obtained. Even then the sulphurets still carry much gold, the larger portion of which is free. They are stored away in jars while wet and allowed to rust, and after a time they are sometimes re-crushed and re-washed ; very often, however, they are merely allowed to accumulate and are not treated further. The first tailings are re-washed, and then stacked.

The cleaned gold is dried and melted over a small forge provided with a box-shaped wooden blower of the usual Chinese type. The fuel is charcoal. Tiny, conical crucibles, capable of holding about a couple of ounces of gold are used; the gold-dust is melted in these with borax and niter as fluxes; the slag is lifted off the surface of the gold when the latter is supposed to be clean, by means of an iron rod, and the gold is then granulated by pouring into water. If it is not considered to be sufficiently soft and pure it is re-melted, and the process is repeated until the gold is quite soft. The principal impurities removed seem to be sulphur, arsenic, a little copper, and perhaps traces of lead. Both the granulated gold and the crude gold-dust, as also gold got from river-washing, are used as currency in this district, coined money being scarcely ever seen here, and then only in the form of the old dollar.

In a partial wash-up at one of these mills, during my stay in the district, the following results, considered to be exceptionally good, were obtained, the quantity washed being as nearly as possible 2000 pounds of crushed ore:

As a general rule, there seems to be left in the tailings about one- third of the gold originally present in the ore, while there must be a considerable additional loss of float-gold carried away in the process of washing, due to the original fineness of some of the gold in the ore, and to the over-stamping already referred to.

From the average of these two assays it would appear that nearly one-third of the original proportion of gold is still left in the tailings. I might quote numerous other assays, but the results in all cases were approximately the same; there were no really clean tailings at all, in spite of the fact that they were all the result of handling sur- face-ores, where practically the whole of the gold was free. The losses above indicated appear enormous, but it must be remembered that the thrifty Chinamen throw nothing awaynot even tailings; however completely, in their opinion, these may be exhausted, they still pile them up and keep them. When, for any reason, their mill would otherwise be idle, they re-pound and re-wash their old tailings, and always get some gold out of them. The piles of tailings are, however, left exposed, so that a considerable proportion gets washed down into the streams and rivers by the heavy rains that occur at each change of monsoon ; and there are a good many Chinese of the poorer classes who make a sort of living by washing the sands in the river-beds, the gold they get being principally, to all appearance, that which has been thrown into the rivers by the miners up stream. It is noticeable that there is no gold, or very little, to be found in the rivers above the points where there are mines in operation. A fair days work of one Chinaman in the river-bed (say six hours actual work) was found, as the average of several trials, to produce an output of 7.3 grains of gold about .940 fine, worth say little in localcurrency. This quantity of gold was obtained by washing 22 large dulangs of gravel, each holding about 70 pounds of dirt.From the average of these two assays it would appear that nearly one-third of the original proportion of gold is still left in the tailings. I might quote numerous other assays, but the results in all cases were approximately the same; there were no really clean tailings at all, in spite of the fact that they were all the result of handling surface-ores, where practically the whole of the gold was free. The losses above indicated appear enormous, but it must be remembered that the thrifty Chinamen throw nothing awaynot even tailings; however completely, in their opinion, these may be exhausted, they still pile them up and keep them. When, for any reason, their mill would otherwise be idle, they re-pound and re-wash their old tailings, and always get some gold out of them. The piles of tailings are, however, left exposed, so that a considerable proportion gets washed down into the streams and rivers by the heavy rains that occur at each change of monsoon ; and there are a good many Chinese of the poorer classes who make a sort of living by washing the sands in the river-beds, the gold they get being principally, to all appearance, that which has been thrown into the rivers by the miners up stream. It is noticeable that there is no gold, or very little, to be found in the rivers above the points where there are mines in operation. A fair days work of one Chinaman in the river-bed (say six hours actual work) was found, as the average of several trials, to produce an output of 7.3 grains of gold about .940 fine.

It is interesting to note that in custom-milling, of which there is a good deal done here (many of the fossickers sending all the gold quartz they collect, whether by mining or picking out of the river- gravels, to one of the water-mills for crushing), the charge made is equal to just a few $U. S. per (long) ton of quartz, this payment including the washing of the gold, but not, so far as I can make out, its cleaning and melting.

It is obvious from the above description, that the total quantity of stone crushed by all the mills in the district, supposing them all to be going simultaneously, and including the foot-mills, could not exceed some 12 tons a day at the best, an amount that could be far more economically and efficiently handled in a five-stamp Californian mill of moderate power. Yet the total annual output of gold from this district (including, however, alluvial as well as reef-gold) is said to be 4861 ounces, fully .900 fine. The total number of men engaged in mining, in one way or another, is close upon one thousand.

buy ore ball mill for mineral processing | iron & gold ore ball mill

Ore ball mill sometimes called ore grinding mill, is generally used in mineral processing concentrator, processing materials include iron ore, copper ore, gold ore, molybdenum ore and all kinds of nonferrous metal ore. The core function of the ore ball mill is to grind the materials, and also to separate and screen different mineral materials, and to separate the tailings, which is very important to improve the quality of the selected mineral materials.

The ore ball mill designed by our company, which is represented by gold ore ball mill and iron ore ball mill, is manufactured with high-quality materials and advanced technology. They have the characteristics of high efficiency, energy-saving, green environmental protection, simple operation, stable operation, and low failure rate, and have a good reputation in the industry.

The crushing ratio of the ore grinding mill is very large, and it is easy to adjust the fineness of the grinding product. The ore grinding mill has strong sealing performance and can be operated under negative pressure. It is widely used in chemical industry, metallurgy, new building materials and other fields.

We offer different types of ore ball mills for customers to choose from. There are energy-saving ore ball mill, dry and wet ball mill,wet grate ball mill, andwet overflow ball mill. Customers can choose to purchase according to material conditions.

Mineral processing is the most important link in the entire production process of mineral products. It is a process of separating useful minerals from useless minerals (usually called gangue) or harmful minerals in a mineral raw material by physical or chemical methods, or a process of separating multiple useful minerals The process is called mineral processing, also known as ore processing.

The first step in the ore processing is to select the useful minerals. In order to select useful minerals from ore, the ore must be crushed first. Sometimes, in order to meet the requirements of subsequent operations on the particle size of materials, it is necessary to add a certain ore grinding operation in the process.

The preparation before beneficiation is usually carried out in two stages: crushing screening operation and mineral classification operation. Crusher and ore ball mill are the main equipment in these two stages.

As a ball mills supplier with 22 years of experience in the grinding industry, we can provide customers with types of ball mill, vertical mill, rod mill and AG/SAG mill for grinding in a variety of industries and materials.

gold processing | britannica

For thousands of years the word gold has connoted something of beauty or value. These images are derived from two properties of gold, its colour and its chemical stability. The colour of gold is due to the electronic structure of the gold atom, which absorbs electromagnetic radiation with wavelengths less than 5600 angstroms but reflects wavelengths greater than 5600 angstromsthe wavelength of yellow light. Golds chemical stability is based on the relative instability of the compounds that it forms with oxygen and watera characteristic that allows gold to be refined from less noble metals by oxidizing the other metals and then separating them from the molten gold as a dross. However, gold is readily dissolved in a number of solvents, including oxidizing solutions of hydrochloric acid and dilute solutions of sodium cyanide. Gold readily dissolves in these solvents because of the formation of complex ions that are very stable.

Gold (Au) melts at a temperature of 1,064 C (1,947 F). Its relatively high density (19.3 grams per cubic centimetre) has made it amenable to recovery by placer mining and gravity concentration techniques. With a face-centred cubic crystal structure, it is characterized by a softness or malleability that lends itself to being shaped into intricate structures without sophisticated metalworking equipment. This in turn has led to its application, from earliest times, to the fabrication of jewelry and decorative items.

The history of gold extends back at least 6,000 years, the earliest identifiable, realistically dated finds having been made in Egypt and Mesopotamia c. 4000 bc. The earliest major find was located on the Bulgarian shores of the Black Sea near the present city of Varna. By 3000 bc gold rings were used as a method of payment. Until the time of Christ, Egypt remained the centre of gold production. Gold was, however, also found in India, Ireland, Gaul, and the Iberian Peninsula. With the exception of coinage, virtually all uses of the metal were decorativee.g., for weapons, goblets, jewelry, and statuary.

Egyptian wall reliefs from 2300 bc show gold in various stages of refining and mechanical working. During these ancient times, gold was mined from alluvial placersthat is, particles of elemental gold found in river sands. The gold was concentrated by washing away the lighter river sands with water, leaving behind the dense gold particles, which could then be further concentrated by melting. By 2000 bc the process of purifying gold-silver alloys with salt to remove the silver was developed. The mining of alluvial deposits and, later, lode or vein deposits required crushing prior to gold extraction, and this consumed immense amounts of manpower. By ad 100, up to 40,000 slaves were employed in gold mining in Spain. The advent of Christianity somewhat tempered the demand for gold until about the 10th century. The technique of amalgamation, alloying with mercury to improve the recovery of gold, was discovered at about this time.

The colonization of South and Central America that began during the 16th century resulted in the mining and refining of gold in the New World before its transferal to Europe; however, the American mines were a greater source of silver than gold. During the early to mid-18th century, large gold deposits were discovered in Brazil and on the eastern slopes of the Ural Mountains in Russia. Major alluvial deposits were found in Siberia in 1840, and gold was discovered in California in 1848. The largest gold find in history is in the Witwatersrand of South Africa. Discovered in 1886, it produced 25 percent of the worlds gold by 1899 and 40 percent by 1985. The discovery of the Witwatersrand deposit coincided with the discovery of the cyanidation process, which made it possible to recover gold values that had escaped both gravity concentration and amalgamation. With E.B. Millers process of refining impure gold with chlorine gas (patented in Britain in 1867) and Emil Wohlwills electrorefining process (introduced in Hamburg, Ger., in 1878), it became possible routinely to achieve higher purities than had been allowed by fire refining.

The major ores of gold contain gold in its native form and are both exogenetic (formed at the Earths surface) and endogenetic (formed within the Earth). The best-known of the exogenetic ores is alluvial gold. Alluvial gold refers to gold found in riverbeds, streambeds, and floodplains. It is invariably elemental gold and usually made up of very fine particles. Alluvial gold deposits are formed through the weathering actions of wind, rain, and temperature change on rocks containing gold. They were the type most commonly mined in antiquity. Exogenetic gold can also exist as oxidized ore bodies that have formed under a process called secondary enrichment, in which other metallic elements and sulfides are gradually leached away, leaving behind gold and insoluble oxide minerals as surface deposits.

Endogenetic gold ores include vein and lode deposits of elemental gold in quartzite or mixtures of quartzite and various iron sulfide minerals, particularly pyrite (FeS2) and pyrrhotite (Fe1-xS). When present in sulfide ore bodies, the gold, although still elemental in form, is so finely disseminated that concentration by methods such as those applied to alluvial gold is impossible.

Native gold is the most common mineral of gold, accounting for about 80 percent of the metal in the Earths crust. It occasionally is found as nuggets as large as 12 millimetres (0.5 inch) in diameter, and on rare occasions nuggets of native gold weighing up to 50 kilograms are foundthe largest having weighed 92 kilograms. Native gold invariably contains about 0.1 to 4 percent silver. Electrum is a gold-silver alloy containing 20 to 45 percent silver. It varies from pale yellow to silver white in colour and is usually associated with silver sulfide mineral deposits.

Gold also forms minerals with the element tellurium; the most common of these are calaverite (AuTe2) and sylvanite (AuAgTe4). Other minerals of gold are sufficiently rare as to have little economic significance.

Of the worlds known mineral reserves of gold ore, 50 percent is found in South Africa, and most of the rest is divided among Russia, Canada, Australia, Brazil, and the United States. The largest single gold ore body in the world is in the Witwatersrand of South Africa.

ball mill plant in philippines | prominer (shanghai) mining technology co.,ltd

2.Uneven grinding and feeding. The original electromagnetic vibration feeder used for grinding is too small, and the feeder is often blocked, and the amount of ore fed fluctuates, which affects the grinding efficiency.

3.The large eccentric force of the single spoon head feeder of the first stage grinding machine causes the ball mill to run unsteadily, the tile seat vibrates violently, the current is large and small, the operating current is 140~80A, the fluctuation range is large, and the spoon head wears relatively Fast and high frequency of replacement.

4.With the annual reduction of open-pit oxide ore, the proportion of primary ore is increasing year by year. Primary ore is more difficult to grind than oxide ore, which affects the fineness of grinding. The steel ball ratio is unreasonable, and the grinding potential of the mill is not fully realized.

5.The raw slurry pump of the grinding system has high speed, severe impeller wear, short maintenance period, and low slurry pumping capacity; when the grinding capacity increases, the pumping is not timely, which often causes the slurry to overflow from the sand box.

6.The thickener of the grinding system is too small, basically unable to play the role of thickening. The thickener currently used in the grinding system is 5.18m, the slurry concentration discharged into the thickener by the cyclone is about 39%, and the concentration of the thickener discharged is about 40%; here the thickener has little thickening effect, and its effect is equivalent In a slurry buffer tank.

7.Coarse-grained gold accounts for a relatively large proportion. The annual output of heavy placer gold in the gold ore dressing plant accounts for about 25% of the annual gold output. When the coarse-grained gold enters the leaching system, the process flow cannot be satisfied due to the long leaching time required, which further affects the tailings and tailing liquid indicators.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.