rotatory dryer

rotary_dryer_rotary_dryer

In long time, L type's lifting board is used in rotary dryer in building material and mineral industry. It has lower volume of production and higher heat loss and lower thermal efficiency and higher water ratio of production.

rotary dryers

Weve built a reputation on building the best rotary dryers in the industry. All of our dryers are custom designed to suit the unique processing needs of your material. Whether you require low or high inlet temperatures, short or long residence times, counter current or co-current flow, FEECOs design team can design a rotary drum dryer for your application.

Rotary dryers are a highly efficient industrial drying option for bulk solids. They are often chosen for their robust processing capabilities and their ability to produce uniform results despite variance in feedstock.

The drum is positioned at a slight horizontal slope to allow gravity to assist in moving material through the drum. As the drum rotates, lifting flights pick up the material and drop it through the air stream in order to maximize heat transfer efficiency. When working with agglomerates, the tumbling action imparted by the dryer offers the added benefit of further rounding and polishing the granules.

All FEECO equipment and process systems can be outfitted with the latest in automation controls from Rockwell Automation. The unique combination of proprietary Rockwell Automation controls and software, combined with our extensive experience in process design and enhancements with hundreds of materials provides an unparalleled experience for customers seeking innovative process solutions and equipment.

Rotary dryers are known as the workhorse of industrial dryers. They are able to process a wide variety of materials, and can lend a hand in nearly any industry requiring industrial drying solutions. Some of the most common industries and materials in which rotary dryers are employed include:

Unlike direct dryers, indirect dryers do not rely on direct contact between the material and process gas to dry the material. Instead, the rotating drum is enclosed in a furnace, which is externally heated. Contact with the heated drum shell is what dries the material.

Benefits of Drying Copper Concentrates InfographicMetallurgical Coke Dryer and Bucket Elevators Project ProfileSingle Pass vs Triple Pass Rotary Dryers (Driers)Rotary Dryer (Drier) for Coke DryingSand Dryers (Driers)Co-Current Vs Counter Current Rotary Drum Dryers (Driers)Rotary Dryer (Drier) with Combustion Chamber for Centrifuged MaterialRotary Dryer for Centrifuged MaterialVFDs in Process EquipmentRotary Dryer (Drier) Combustion Chamber DuctingCombustion Chamber with Burner Mounted onto Rotary Drum Dryer (Drier)FEECO Combustion Chamber ModelRotary Drum Dryer (Drier) with Combustion ChamberQuestions to Ask When Purchasing a Rotary Dryer (Drier)Rotary Dryer (Drier) FlightsFEECO Rotary Dryer (Drier)FEECO Rotary Drum Dryer (Drier)Rotary Drum Dryer (Drier) ReplacementBedding Dryers (Driers)Mineral Dryer (Drier), Rotary Drum DryerDried Limestone PelletsVermiculite Dried in a Rotary Dryer (Drier)Rotary Drum Dryer (Drier) TestingMineral Drying Featured Image, Rotary Drum DryingRotary Dryer (Drier) Testing ThumbnailRotary Drum Dryer (Drier) TestingKnowing When its Time to Replace Your Rotary Drum Seal, Leaf SealRotary Drum Drive ComponentsRotary Drum BreechingReplacement Rotary Drum BearingsResource of the Week: Rotary Dryer (Drier) and Cooler BrochureReplacement Dryer (Drier) and Kiln BurnersCombustion ChambersReplacement Drum Flights, Rotary Dryer (Drier) and Cooler FlightsReplacement Rotary Drum ShellRotary Drum Laser Alignment Process, Rotary Drum AlignmentWhy Post Maintenance Alignment is Critical to Rotary DrumsCauses of Tire (Tyre) and Trunnion Wear, Rotary Drum TireFEECO Tire (Tyre) Grinding Machine, Tire and Trunnion Grinding in ProgressRotary Drum Tire (Tyre) Wear Pattern from Excessive Wheel Skewing, Rotary Drum Tire in Need of Tire GrindingRotary Drum Tire (Tyre) Wear Pattern from Poor Housekeeping Practices, Rotary Drum Tire in Need of Tire GrindingRotary Drum Tire (Tyre) Wear Pattern from Misalignment, Rotary Drum Tire in Need of Tire GrindingRotary Drum Tire (Tyre) Wear Pattern from Using Improper Tire Lubricant, Rotary Drum Tire in Need of Tire GrindingTire (Tyre) and Trunnion Wheel GrindingTire (Tyre) and Trunnion GrindingResource of the Week: Limestone Drying Slideshare Presentation Replacement Rotary Drum PartsResource of the Week: Slideshare Presentation on Rotary Dryers (Driers) for Frac SandRotary Drum Thrust RollersRotary Drum Trunnion Wheels (Rollers)Rotary Drum Riding Ring (Tire/Tyre)Rotary Dryer (Drier) Process AuditsResource of the Week: Rotary Dryer (Drier) Sizing and Design Slideshare PresentationResource of the Week: Girth Gears PageRotary Drum Knocking SystemsSpring-Mounted Replacement Rotary Drum Girth GearResource of the Week: Frac Sand Dryers (Driers) Project Profile3D Model of a FEECO Indirect Rotary DryerRotary Dryers (Driers) in the Fertilizer (Fertiliser) IndustryRotary Dryer (Drier) with Trommel Screen (aka., grizzly)Combustion Chamber on Manure Dryer (Drier)Double-Bend Dryer (Drier) FlightsBurner and Combustion Chamber on a Rotary Dryer (Drier)Rotary Dryer (Drier) Advancing FlightsFEECO Rotary Dryer (Drier) Flight SimulatorRotary Drum Drive BaseRotary Dryer (Drier) Burner and Combustion ChamberBucket Elevator Shown Feeding Rotary Dryer (Drier)Rotary Dryer (Drier) Exhaust Handling SystemFEECO Rotary Dryer (Drier) Complete SystemResource of the Week: FEECO Flight/Lifter Simulator BrochureResource of the Week: Tire Grinding BrochureResource of the Week: Unitized Drive Base BrochureFEECO Rotary Dryer (Drier)Rotary Dryer (Drier) Design 101: Defining Your Atmosphere View All >

Our rotary dryers are built to the highest quality standards, with longevity in mind. The best part about buying a FEECO rotary dryer, is that you get the security of knowing your equipment is backed by over 60 years of experience, material and process knowledge, and a proven track record.

rotary dryer: operating principle, classifications, uses, advanta

The rotary dryer also known as tumbling dryer is an equipment employed to minimize the moisture content of feed materials by bringing it in direct contact with a heated gas. It consists of an inclined long drum or cylindrical shell often fitted with internal flights or lifters; rotated slowly upon bearings through which the material to be dried flow with a tumbling/cascading action in concurrent (for heat-sensitive materials) or counter-current flow with the heating air or gases.

The movement of the material is due to the combined effect of inclination of the shell to the horizontal and the internal tumbling action or mechanical turn over thus the name tumbling dryer. The nature of the feed determines the directions of gas flow through the cylinder and it is relative to the solid. This drying equipment can also perform batch or continuous processing of the wet feed.

A rotary dryer is said to be of the direct type if, by virtue of its design, heat is added to or removed from the solids by direct exchange between the gas and solids. The direct heat dryers are the simplest and the most economical class. They are used when direct contact with the hot gas or air is not detrimental to the fed.

When high temperature is required for the drying process in a direct-heated rotary dryer, a combustion chamber is used and when low temperature is required on the other hand, for thermolabile materials, steam coil is used.

Although there is an infinite variation of rotary dryers, which present characteristics suitable for drying, chemical reactions, mixing, solvent recovery, thermal decompositions, sintering and agglomeration of solids, the main types of rotary dryers include;

1. Excessive entrainment losses in the exist gas stream is possible especially if the material contains extremely fine particles due to the large gas volumes and high gas velocities that are usually required.

rotary drum dryer systemworking principle and design -palet

The Materials to be dried enter into the dry zone of special combination plates are thrown by drying plate for vertical movement because of angle difference and rotational motion of the drying plate. After making heat exchange with the materials, the high-temperature furnace gas discharged into the cylinder evaporates water and drys the material, it can prevent the material from sticking on the inside of the cylinder. It is a part of the pellet mill plant.

Qingdao PALET Machinery can design and supply the Rotary Dryer Machine,dryer equipment for the customers especially according to the information of material. This raw material is wood chips, sawdust, etc.

1. The capacity is different. The output capability of the rotary drum dryer ranges from around 1000 to 5000kg /h at most while the sawdust flash dryer can produce around 100-2000kg/h. The air flow dryeris suitable for drying the wood powdersawdustect.

2. The price is different. The air flash dryer is cheaper than that of the rotary drum dryer price. How to select the dryer? When purchasing the dryer, it is better to consider the all-around situation of your dryer and pellet production and find a suitable dryer.

Qingdao palet machinery co,.ltd is a professional manufacturer of biomass wood pellet mill, wood pellet plant, rotary dryer, activated carbon rotary klin,activated carbon machine, hammer mill, crusher, etc.

rotary dryers - an overview | sciencedirect topics

Rotary dryers are mainly used in the chemical and mineral industry. In the area of food, their most common applications are for dehydrating waste materials (citrus peels, vegetable trimmings) and animal feedstuffs (alfalfa). Rotary dryers consist of a metal cylinder with internal flights or louvers (Fig. 22.21). The cylinder is slightly inclined. The material is fed at the high end and discharged at the low end. Hot air is blown in cocurrent or countercurrent direction. As the cylinder rotates, the material climbs in the direction of rotation. When it reaches a position where its angle of repose has been exceeded, the material falls back to the bottom of the cylinder (Fig. 22.21). Most of the drying takes place while the material falls through the air blast. Using very hot air or combustion gases, rotary dryers can also function as roasters for nuts, sesame seeds, and cocoa beans. A detailed method for the design of rotary dryers, based on a heat exchange approach has been described by Nonhebel (1971).

Rotary dryers are often used for particulate material. Particles and hot air are continually fed to the drum. These large rotating drums have lifting flights which carry the particles upward as the drum rotates. The particles leave the lifting flight near the top of the drum and fall through the air stream. Heat is transferred to the particles both from the air and from contact with the dryer. The drums may have concentric sections so that the particles and air traverse the length of the drum up to three times. Residence time is on the order of minutes. Friable material, such as wafers or flakes, may be dried on trays or belts instead of in drums. Very fine material, such as fiber board furnish, might be dried in a tube dryer in which the air carries the fiber through the tube in seconds.

For particulate solids, a rotary dryer may help promote uniform and more rapid drying (Fig. 14.14). In the rotary cascade dryer, the material is placed in a rotating cylinder through which a hot air stream is passed. Flights on the cylinder wall lift and cascade the product through the air. In a variant, louvers are used instead of flights so that the product is mixed and rolled instead of dropped. The dryer is typically sloped, so that the product enters and gradually falls toward the discharge end. In direct rotary dryers, the air is passed through burners, and directly comingles with the product. Rotary dryers have been used to dry seeds, corn gluten, distillers grains, and some fruit.

A rice combine harvester usually performs with less loss of paddy; however, the potential shortcoming is that the paddy must be harvested at high moisture content, that is, ranging from 20% to 28%. The high moisture content of harvested paddy is conducive to rapid deterioration in quality such as discoloration, yellowing, germinating, and damage to milling quality.

The only practical means of preventing grain quality deterioration is immediate drying of high moisture paddy, because sun drying, the conventional method, is inadequate to guarantee the quality and quantity of the produce. Thus there is a high demand for mechanical drying facilities.

Most mechanical dryers available are suitable for rice millers and farm cooperatives that handle thousands of tons of paddy. Small-scale dryers were developed for farm use, such as a fixed bed dryer and solar rice dryer (Exell and Kornsakoo, 1977); however, those were not widely accepted because of the potential inconvenience in loading/unloading of paddy and unequal drying.

Jindal and Obaldo (1986) and Puechkamutr (1988) worked on accelerated drying of high moisture paddy using conduction heating for a rotary dryer. Their studies demonstrated the potential of high temperature for quick drying of paddy without significant damage to the grain. This technique is promising from an energy consumption point of view.

Puechkamutr (1985) developed a rotary dryer for paddy based on conduction and natural convection heating. Paddy was effectively dried from moisture content of 23% to 16% (w.b.) using a pipe heat exchanger at surface temperatures of 170C200C with a residence time of 3070s. Rapid drying and good milling quality of the paddy could be achieved with such a dryer.

A combination conductionconvection heating type rotary dryer was developed for on-farm drying as a first stage. It consisted of double cylinders: the external cylinder with 500mm diameter, attached to an inside surface with straight flight; and an inner cylinder, hexagonal in shape with an outer tray and firing device installed inside as a part of the inlet cylinder. The grain cascaded inside the external cylinder with a concurrent flow of air. Experimental results showed that about 3% of moisture content could be removed with single pass with a small reduction in milling quality (Likitrattanaporn, 1996).

Another study of a combined conductionconvection type rotary drum dryer was made by Regalado and Madamba (1997) on thermal efficiency. The fresh ambient air forced inside the drum in a counter flow direction of grain brought evaporative cooling of the hot grain as shown by the increase in moisture reduction whenever air velocity was increased.

A further improved prototype of a combined conductionconvection type rotary drum dryer used ambient air that was forced inside the drum in counter flow to the direction of the cascading grains. The grain was heated by conduction heating as drying proceeded and followed by convection heating as cooling occurred of the heated grain. The results showed that its partial drying capacity was approximately double that of the predryer developed by the International Rice Research Institute requiring only a single pass operation. Neither drum surface temperature nor ambient air velocity and their interaction influenced total milling recovery and head rice recovery.

Likitrattanaporn et al. (2003) designed and developed a combined conduction and convection heating rotary dryer for 0.5t/h capacity using liquefied petroleum gas (LPG) as the heat source, to dry high moisture paddy under farm conditions. The main aim was to find an affordable way of drying field paddy on the day of harvesting to facilitate handling and for higher returns of produce for the farmer. Emphasis was placed on operating conditions in which up to 3% moisture could be removed in a short time while grain quality should be closed to fresh paddy. Performance of the rotary dryer in terms of moisture removal, residence time, energy consumption, and milling quality were evaluated.

An experimental rotary dryer designed with concurrent flow system comprising two primary parts, a double cylinder and a discharge cover, is shown in Fig. 12.1. Forward movement of paddy takes place by inclination angle and rotary motion of the cylinder, while air is blown through the cylinder by the suction fan located on top of the discharge cover. A 1-hp motor with 1:60 reduction gear was used for driving the rotary dryer. The LPG lamp on the entry end heats up the air and heated air moves to other end by suction fan. During forward motion, paddy first contacts the outer surface of the inner cylinder where conduction heating takes place followed by a cascading action along the inside of the external cylinder resulting in convection heating. After this the paddy falls into the discharge cover and out of the dryer, while the suction fan sucks the moist air.

Relatively less moisture was removed during the last (third) pass at temperatures of 100C and 110C, that is, 1.5% and 1.7%, respectively. At 120C temperature, moisture content of 2.1% could be removed. Clearly, this is because there was less free water available at the third pass of drying.

The conduction and convection zones are shown in Fig. 12.2, along with the inlet and outlet temperatures of grain and the hot air. It can be seen that high temperature in the conduction zone can remove a higher amount of water than in the convection zone, which is, in turn, sucked out by hot moist air. It can also be observed that outlet grain temperature was dropped to the safe range (max. 52C) within a very short time (23min).

To demonstrate the dryers heat exchange efficiency, comparison of the effects of conduction heating and convection heating on moisture removal showed that the major moisture content of paddy was removed by the conduction heating for all temperatures, whereas the convection heating could remove moisture less than 0.4%.

Being designed as a mobile unit for drying paddy in the field, energy consumption is one of the most important aspects of consideration. The difference in weight before and after running a pass was recorded. A statistically insignificant difference was found in weight of LPG consumed at all temperatures. The average power consumption was, however, 0.6kWh and power of 0.46kg/h LPG. It was estimated that the operating cost of removing up to 1% of the moisture content of 1t of paddy was $0.23 in the first pass. The cost would increase up to $0.33 in the second pass and subsequently increase in the third pass depending on the availability of free moisture.

Likitrattanaporn et al. (2003) designed and developed a combined conduction and convection heating rotary dryer for 0.5ton hr1 capacity using liquefied petroleum gas (LPG) as the heat source, in order to dry high moisture paddy under farm conditions. The main aim was to find an affordable way of drying field paddy on the day of harvesting to facilitate handling and for higher returns of produce for the farmer. Emphasis was placed on operating conditions in which up to 3% moisture could be removed in a short time while grain quality should be closed to fresh paddy. Performance of the rotary dryer in terms of moisture removal, residence time, energy consumption, and milling quality were evaluated.

An experimental rotary dryer designed with concurrent flow system comprising two primary parts; a double cylinder and a discharge cover is shown in Figure 10.1. Forward movement of paddy takes place by inclination angle and rotary motion of the cylinder, while air is blown through the cylinder by the suction fan located on top of the discharge cover. A one horse power motor with 1:60 reduction gear was used for driving the rotary dryer. The LPG lamp on the entry end heats up the air and heated air moves to other end by suction fan. During forward motion, paddy first contacts the outer surface of the inner cylinder where conduction heating takes place followed by a cascading action along the inside of the external cylinder resulting in convection heating. After this the paddy falls into the discharge cover and out of the dryer, while the suction fan sucks the moist air.

Relatively less moisture was removed during the last (third) pass at temperatures of 100C and 110C, i.e. 1.5% and 1.7%, respectively. At 120C temperature, moisture content of 2.1% could be removed. Clearly, this is because there was less free water available at the third pass of drying.

The conduction and convection zones are shown in Figure 10.2, along with the inlet and outlet temperatures of grain and the hot air. It can be seen that high temperature in the conduction zone can remove a higher amount of water than in the convection zone which is, in turn, sucked out by hot moist air. It can also be observed that outlet grain temperature was dropped to the safe range (max. 52C) within a very short time (23min).

To demonstrate the dryers heat exchange efficiency, comparison of the effects of conduction heating and convection heating on moisture removal showed that the major moisture content of paddy was removed by the conduction heating for all temperatures, whereas the convection heating could remove moisture less than 0.4%.

Being designed as a mobile unit for drying paddy in the field, energy consumption is one of the most important aspects of consideration. The difference in weight before and after running a pass was recorded. A statistically insignificant difference was found in weight of LPG consumed at all temperatures. The average power consumption was, however, 0.6KWh and power of 0.46kg/hr LPG. It was estimated that the operating cost of removing up to 1% of the moisture content of 1 tonne of paddy was 0.23$ in the first pass. The cost would increase up to 0.33$ in the second pass, and subsequently increase in the third pass depending on the availability of free moisture.

Dried citrus peel is one of the most common feeds. It is manufactured by pressing peel through a rotary dryer and adding citrus molasses to help the drying process and help prevent the peel from burning. The moisture content of dried peel must be below 10%. Many experiments published in the 1970s have shown that dried orange pulp, partially or completely replacing cereals in concentrate mixtures, are particularly useful in reducing feeding costs in dairy cows, have no influence on production, and have a good palatability. Dried pulp has also been used in swine, which have been shown to utilize it at a ratio of up to 2025%. Besides its use as a substitute for maize, up to 20% in diet has no influence on the growth and production of laying hens. The dried pulp can be pelletized and is consumed more easily by ruminants with advantages of storage, shipping, and microbial spoilage. Pellets made from dried pulp have different dimensions, and several factors affect their characteristics, such as the energy used in pelletizing and the proportions of citrus molasses (about 515% of the total weight gives excellent results) used as binding agents.

Thermal desorption is a technology of physical separation based on heating the contaminated soil to volatilize water and organic contaminants. Soils are heated in a thermal desorption system, the rotary dryer being the most commonly used equipment. Thesystems require the treatment of the off-gas to remove particlesand contaminants. Its effectiveness depends on the contaminant. Decontaminated soil usually returns to the original site. Based on the operating temperature, these processes can be categorized into two groups: high-temperature thermal desorption ranging from 320 to 560C and low-temperature thermal desorption ranging from 90 to 320C. Thermal desorption can be used in a place where some other cleanup methods cannot be used, such as at sites that have a high soil contamination, and can be a soil remediation method that is faster than others.

Thermal methods may also be applied as an in situ technique. In this case, heat is applied to soil to volatilize semivolatile organic compounds (SVOCs), which can be extracted via collection wells and treated. It is a particular case of SVE. Heat can be introduced into the subsurface by electrical resistance heating, radio frequency heating, or injection of hot air or steam. Thermal methods can be particularly useful for dense nonaqueous phase liquids (DNAPLs) or light nonaqueous phase liquids (LNAPLs).

rotary dryer - fodamon machinery

Rotary dryer(Drying Machine) is used for drying materials with a certain humidity or granularity in milling of ores, building materials, metallurgy and chemical industry. Gyro drying machinery has a strong adaptability of materials and it can dry various materials. The operation is very simple and liable. For this reason, it is used widely.

Rotary dryer(Drying Machine) is used for drying materials with a certain humidity or granularity in milling of ores, building materials, metallurgy and chemical industry. Gyro drying machinery has a strong adaptability of materials and it can dry various materials. The operation is very simple and liable. For this reason, it is used widely.

Materials are sent to hopper of rotary dryer by belt conveyor or bucket elevator.The barrel is installed with slope to horizontal line. Materials enter the barrel from the higher side, and hot air enters the barrel from the lower side, materials and hot air mix together. Materials go to the lower side by gravity when the barrel rotates. Lifters on the inner side of barrel lift materials up and down to make materials and hot air mix completely. So drying efficiency is improved.

Fodamon specializes in the production of large dryers, industrial dryers, etc., which are also called drum dryers, rotary dryers, etc. According to the different drying materials, they are also called cement dryers, slime dryers, sludge dryers, animal dung, bean dregs, palm dregs, desulfurization gypsum dryers, sand dryers, fly ash dryers, lignite dryers, etc. Dry mortar dryer and so on.

According to the different processing materials, it can be divided into talc dryer, kaolin dryer, lignite dryer, sludge dryer, sand dryer, river sand dryer, slag dryer, slime dryer, fly ash dryer, clay dryer, gypsum dryer, concentrate dryer, desulfurization dryer, etc.

If you would like to get help immediately, PLS click the WhatsApp chat, which is fixed on the left of browser. Meanwhile, you can also fill your requirements on the following form, we will contact you on the right time.

rotary dryers | general kinematics

Rotary dryers are used to remove unwanted water in organic materials to make them more usable. Rotary dryers lift the materials and pour it through heated air allowing the moisture to evaporate, which makes the organic materials viable. Although rotary dryers take regular wear and tear from these organic materials during the drying process, they are designed to withstand both high temperatures and abrasive materials.

Every General Kinematics Rotary Dryer is custom engineered to maximize the unique drying and processing needs of your material. GK Rotary Dryers use rotary motion to lift and cascade your material through the hot gas stream, evaporating moisture evenly. Dryers can be designed using various drying technologies, and when working with us, you can pick the technology that best fits your needs. Choose between direct drying in counter-current or co-current flow, or indirect drying, which utilizes ing external heat applied to the exterior of the drum shell.

GK rotary dryers are built to last, and may also help you reduce your maintenance costs. Thats because our designs use extra heavy-duty components for extended uptime and minimized upkeep. Not only that, but material contact surfaces are manufactured from wear-resistant materials, so drums will last a long time between servicing. Rotary trunnions and rings are forged for superior strength and durability and are easy to replace or resurface.

Let the engineers at GK work with you to design a complete drying system that meets your needs. Couple your rotary dryer with GKs proven vibratory material handling equipment to pre-process, feed, and deliver your dried product to the next step in your manufacturing process.

Learn More To learn more about General Kinematics rotary dryers and equipment, simply fill out the form below to get started today. Since our rotary dryers are build-to-order, were here to help you figure out what type best meets your needs.

rotary dryer, efficient organic fertilizer drying machine

Rotary dryer, consisted of drum, lifting board, transmission device and support device and other assembly parts, can be custom designed to suit the unique processing needs of customers material. The drum should be fixed at a slight horizontal slope (about 2-5 degree) to allow gravity to assist in moving material through the drum. As the drum rotates, lifting flights pick up the material and drop it through the air stream in order to maximize heat transfer efficiency. In virtue of simple operation, low energy consumption, long lifespan, even drying and easy maintenance, our rotary dryer has been widely applied into agriculture, feed and fertilizer industry, such as straw, pasture, organic mixed fertilizer, fish meal, starch residue, organic fertilizer, waste of aquatic products, especially used to dry fertilizer with certain temperature and particle size in organic fertilizer production.

Rotary drum dryer runs on the principle that belt and belt pulley, driven by main motor, transmit to driving shaft through reduction gears, and then split gears installed on driving shaft can engage with big gear ring fixed on engine body, working in the opposite direction. Materials are added from feed end, then enter into drum under the attractive force of hot-blast air generated by hot blast heater and draught fan. During this process, the lifting board installed in drum would turn over materials continually so as for even drying, and materials would outflow from discharge hole after drying. after being dried by rotary dryer, the temperature of fertilizer granules/prills can reach 60-80. Then the hot organic fertilizers are transported to rotary coolerfor further processing. Advantages of Rotary Dryer:

Rotary cooling system suits to both organic fertilizer plants and compound fertilizer ones. For many processes the robust rotary drum cooler is the optimum solution for direct cooling of the material with air.

The automatic and quantitative packaging machine is installed in organic fertilizer plant to fulfill high-efficiency bagging process. Whirlston provides you with cost efficient solutions to bagging fertilizer.