wet ball mill mails for sale

wet ball mill/small ball mill/ball mill for sale/ball mill grinder/ball mill

ball mill is mainly used to grind materials in mineral,cement,refractory,chemical industry, etc.Ball Mill has dry and wet ways.When wet Ball Mill works,certain water and other liquid will be added into materials to increase flowability of materials,so the capacity is increased. When dry Ball Mill works,capacity is affected because material flowability is reduced,so absorbing wind device is needed on the outlet of Ball Mill,and then negative pressure is formed in the Ball Mill to increase flowability of material, so the capacity is increased.

When the Ball Mill works,motor and speed reducer transmit torque force to big and small gears of Ball Mill,so the barrel rotates.When the barrel rotates,Steel balls or other grinding media in the barrel are lifted to a certain height and fall down freely,so materials in the barrel are impacted.Grinding media mixing with materials impact and grind materials continuously.The grinding media and materials impact and grind each other when the Ball Mill rotates continuously.The final product will be discharged from outlet when it meets the request,so the grinding process is finished.

china 4l laboratory wet vertical planetary ball mill for sale manufacturers & suppliers & factory - best price 4l laboratory wet vertical planetary ball mill for sale for sale - deco

Model NO.: DECO-PBM-V-4L Precision: High Precision Certification: CE, ISO9001 Condition: New Discharging Granularity: Down to 0.1 Um Drive Mode: Gear Drive and Belt Drive Speed Ratio: 1:2 Rotation Speed: 850rpm Warranty: One Year Transport Package: Wooden Box Specification:4L Origin: Hunan,...

ball mill machine for sale - ftm machinery

The ball mill is a milling equipment used to grind various materials and produce ore pulp, which uses steel balls as the grinding medium. According to different grinding methods, ball mill can be divided into the dry and wet ways. In general, we adopt the wet grinding method for the ore dressing.

The ball mill equipment developed by FTM Machinery is a grinding machine, which uses steel balls as the grinding medium. And the ball mill grinder is mainly used for grinding cement, silicate products, new building materials, refractory materials, fertilizers, various ores and glass ceramics, etc. Besides, it is widely used in industries such as ore dressing, building materials, and chemicals. According to different grinding methods, the grinding process can be divided into dry and wet ways. In general, the minerers usually adopt the wet grinding method for the ore dressing.

The ball mill machine can grind many kinds of materials like limestone, diabase, calcium carbonate, quartz stone, iron ore, copper ore, gold ore, grindable materials, non-metallic ore, non-flammable and explosive materials.

Ball mills sold by Fote Machinery manufacturer are unique in the following aspects. The product ball mill grinding enjoys the feature of fine discharging size and it has the following advantages like easy to use and operate, has high working capacity, simple operation, and reliable performance.

According to the material and discharging methods, the FTM Machinery dry ball mill and the wet ball mill can be the best choices, because they both have good abrasion resistance, large crushing ratio, superior technology, the national processing standard, high processing precision, and good quality.

The wearing parts of the ball mill grinding mainly refer to the liner. The wear and service life of ball mill liners are related to the cost and production effect of the ball mill equipment. Then, how to distinguish the The pros and cons of the ball mill ceramic liner? First, look at the casting and smelting process of ball mill liners. Secondly, whether the quenching and tempering treatment of lining is qualified, and finally is the material of the lining.

At present, common materials of ball mill liners on the market are high chromium cast iron, low alloy wear resistant cast steel, high manganese steel materials, etc. These three kinds of liners have good wear resistance.

Ball mill is one of the most imporatant machines in ore derssing plant. it can be used to process many materials including gold, copper, granite, quartz, pebble, limestones, etc. The final product of the gold ball mill is ieal and also always can be use on cosmetic.According to the actual grinding materials, China FTM equips the ball mill with suitable grinding media and changes traditional surface contact to line contact, so that the discharging size is more even and the yield is higher. We know the grinding methods of ball mill, then how does a ball mill work? Here is the introdoction.

Firstly, the materials enter the first chamber of the mill uniformly through the hollow shaft of the feeder. The ball mill liners have different kinds of steel balls. When the cylinder rotates, the FTM Machinery ball mill brings the materials and the balls to a certain height and then let them fall.After continuous impact on materials and balls, the materials are ground roughly in the first chamber.

Secondly, the materials enter the second chamber through a single-layer compartment board. And the chamber is lined with a flat lining plate, some steel balls inside, then Fote Machinery ball mill is grinding these materials further. Finally, the materials are ground into a fine powder.

We all know that the ball mill is just the general terms of the different types of ball mill machine. It is mainly divided into the two knids: ball-type mill and rod-type ball mill.The ball mill and the rod mill are widely used in the dressing plant,then how to distinguish them?

The working principle is basically the same. Regardless of the ball mill or the rod mill, when the cylinder rotates, the grinding media (ball or rod) installed in the cylinder body are lifted to a certain height, and then they are thrown at a certain linear velocity, so the grinding media causes some impact and crunch to materials of the cylinder body. Finally, the grinding work is finished.

Grinding media: The grinding media inside the cylinder are different. The ball mill media is the ball mill balls. The grinding media of rod mill is a steel section, and the ceramic ball mill is the ceramic ball, as is shown in the following picture.

Appearance ratio: Rod mill, whose appearance is the same as that of the industrial ball mill. The difference is that the ratios of cylinder shape are different. For example, the length ratio of the rod mill to the diameter is generally 1.5-2.0, and the inside lining plate on the end cap is the vertical plane. The length ratio of the barrel to the diameter of the ball mill is small, and in most cases, the ratio is only slightly greater than 1.

Among these ball mills, the most commonly used ball mills are lattice-type ball mill and overflow-type ball mill (named from the different discharging structure). While the rod mill does not use a grid plate for discharging, there are only two kinds: overflow-type and open-type. And the diameter of the hollow shaft in the discharging end is generally larger than that of a ball mill with the same specification.

Performance analysis: The characteristics of the rod mill are that the product is rough, but the particle size is even, and the coarse particles and the slime are little. Therefore, when the rod mill is working, the finished products are relatively light. Characteristic of the particle size is related to the condition of the rod-grinding ore. At the same time, the performance characteristics of ball mill are large production capacity, strong adaptability to materials, high fineness of materials and fine grain size. Besides, the ball mill is easy to grind finely, and significant in energy-saving, but the over-grinding phenomenon is serious.

We have a customer called Mike Reynolds, in beaver Utah. And he has some dump material at his mine called horseshoe. Because the dump materials do not have high enough grade to get a good recovery, Mike called them as tailing. However, silver and gold metals are still inside and he wants to process the tailings into concentrates again.

This process is simple, by taking sand tailings into a feeder hopper, then relying to a conveyor belt. On the bottom of the feeder, there is a machine that can adjust the amount of sand thats going onto the belt, so he knows exactly how much material fed into the mill site per hour and it can be adjusted accordingly if needing to go faster or slower.

After the conveyor belt, sand tailings will going to the ball mill machine, which is a big drum that has steel balls inside about three-quarter-inch around. And every time when drums going around, milling balls fall on top of tailings and crush them into a finer mesh and liberates the metal from the rest tailings.

After the tailing goes through the ball milling machine, it is fed into the machine called shaking table. There are three tables stacked on tope of each other. They are approximately 8 feet by 20 feet, 17 feet high. The tables are used for gravity separation, no chemicals used here, shaking forth and back. Because the weight of gold metal is heavier than the weight of sand, sand waste will be one direction, the heavy metals go to the other direction. At the end, the heavy metals are trapped as concentrates.

As one of the well-known ball mill manufacturers in China, FTM Machinery has always been adhering to the purpose of integrity-basis and quality-first, and striving to build the most advanced ore dressing equipment in China. We not only have industrial ball mill, but also manufacture the small ball mill. The small ball mill in our ball mill grinding factory is also for sale in South Africa, zimbabwe, india, philippines, etc. If you want to grind limestone or other materials with small capacity, the small ball mill is prepared for you. We sincerely welcome friends at home and abroad to come and choose the equipment you want.

small ball mills for sale

Our small-scale miners Ball Mills use horizontal rotating cylinders that contain the grinding media and the particles to be broken. The mass moves up the wall of the cylinder as it rotates and falls back into the toe of the mill when the force of gravity exceeds friction and centrifugal forces. Particles are broken in the toe of the mill when caught in the collisions between the grinding media themselves and the grinding media and the mill wall. In ball mills, the grinding media and particles acquire potential energy that becomes kinetic energy as the mass falls from the rotating shell. Ball mills are customarily divided into categories that are mainly defined by the size of the feed particles and the type of grinding media.

Intermediate and fine size reduction by grinding is frequently achieved in a ball mill in which the length of the cylindrical shell is usually 1 to 1.5 times the shell diameter. Ball mills of greater length are termed tube mills, and when hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. In general, ball mills can be operated either wet or dry and are capable of producing products on the order of 100 um. This duty represents reduction ratios as great as 100.

The ball mill, an intermediate and fine-grinding device, is a tumbling drum with a 40% to 50% filling of balls. The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture. Very large tonnages can be ground with these devices because they are very effective material handling devices. The feed can be dry, with less than 3% moisture to minimize ball coating, or a slurry can be used containing 20% to 40% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, autogenous mills, or semi-autogenous mills. Regrind mills in mineral processing operations are usually ball mills, because the feed for these applications is typically quite fine. Ball mills are sometimes used in single-stage grinding, receiving crusher product. The circuits of these mills are often closed with classifiers at high-circulating loads.

All ball mills operate on the same principles. One of these principles is that the total weight of the charge in the mill-the sum of the weight of the grinding media, the weight of the material to be ground, and any water in the millis a function of the percentage of the volume of the mill it occupies.

The power the mill draws is a function of the weight of the charge in the mill, the %of volumetric loading of the mill, the %of critical speed, which is the speed in RPM at which the outer layer of the charge in the mill will centrifuge.

For closed grinding circuits producing typical ball mill products, indirect and direct on-line measurements of the product size are available. The indirect means are those which assume that the product size is relatively constant when the feed condition to the classifying unit and the operating conditions in the classifying unit are constant. One example is maintaining a constant mass flow, pulp density and pressure in the feed to the cyclone classifier.

By using math modeling, it is possible to calculate the product size from measured cyclone classifier feed conditions and circuit operating data, thus establishing the effect on the particle size distribution in the product for changes in the variables.

Direct on-line means to measure either particle size or surface area are available for typical ball mill circuit products. These require the means to obtain representative or at least consistent samples from the grinding circuit product stream. These direct means and the calculated product particle size distributions can be used to:

Small variations in the feed size to ball mill circuits generally is not critical to the calculation of operating work index because they make a very small change in the 10F factor. Thus, a computer program can be developed to calculate operating work indices from on-line data with the feed size a constant and with the program designed to permit manually changing this value, as required to take into account changes in feed size resulting from such things as drawing down feed bins, crusher maintenance, work screen surfaces in the crushing plant, etc. which are generally known in advance, or can be established quickly. Developments underway for on-line measurement of particle size in coarser material which when completed will permit measuring the feed size used to calculate operating work indices.

recorded by a data logger, gives continuous means to report comminution circuit performance and evaluate in-plant testing. Changes in Wio indicated on data loggers alert operating and supervisory personnel that a change has occurred in either the ore or in circuit performance. If sufficient instrumentation is available, the cause for a problem can often be located from other recorded or logged data covering circuit and equipment operation, however, generally the problem calls for operator attention to be corrected.

Wio can be used to determine the efficiency of power utilization for the entire comminution section of a mill, and for the individual circuits making up the comminution section. The efficiency of a comminution circuit is determined by the following equation.

Wi is obtained by running the appropriate laboratory tests on a composite sample of circuit feed. Wio is calculated from plant operating data covering the period when the feed sample was taken. Since Wi from laboratory tests refers to specific conditions for accurate efficiency determinations, it is necessary to apply correction factors as discussed in The Tools of Power Power to Wio to put the laboratory and operating data on the same basis.

To-date, there is no known way to obtain standard work index data from on-line tests. Continuous measurement of comminution circuit efficiency is not possible and thus efficiency is not available for circuit control. Using laboratory data and operating data, efficiency can be determined for overall section and individual circuit for evaluation and reporting. Just monitoring Wio and correcting operating problems as they occur will improve the utilization of the power delivered to the comminution circuits.

Samples taken from the chips around blast hole drillings and from broken ore in the pit or mine for laboratory work index and other ore characteristic determinations before the ore is delivered to the mill, can be used to predict in advance comminution circuit performance. Test results can also be used for ore blending to obtain a more uniform feed, particularly to primary autogenous and semi-autogenous circuits.

We sell Small Ball Mills from 2 to 6 (600 mm X 1800 mm) in diameter and as long as 10 (3000 mm) in length. The mills are manufactured using a flanged mild steel shell, cast heads, overflow discharge, removable man door, spur type ring gear, pinion gear assembly with spherical roller bearings, replaceable roller bronze trunnion bearings, oil lubrication, replaceable trunnion liners with internal spirals, rubber liners and lifters, feed spout with wash port, discharge trommel with internal spiral, motor and gear reducer drive, direct coupled to pinion gear, gear guard and modular steel support frame. All ball mills always come withOSHA-type gear guard.

A PULP level sufficiently high to interpose a bed of pulp, partly to cushion the impact of the balls, permits a maximum crushing effect with a minimum wear of steel. The pulp level of theseSmall Ball Millscan be varied from discharging at the periphery to discharging at a point about halfway between the trunnion and the periphery.The mill shell is of welded plate steel with integral end flanges turned for perfect alignment, and the heads are semi-steel, with hand holes in the discharge end through which the diaphragm regulation is arranged with plugs.The trunnion bearings are babbitted, spherical, cast iron, and of ample size to insure low bearing pressure; while the shell and saddle are machined to gauge so that the shells are interchangeable.

Data based on:Wet grinding, single stage, closed circuit operation: feed:( one way dimension); Class III ore. All mills:free discharge, grated type, rapid pulp flow. N. B.for overflow type mills: capacity 80%power 83%. Dimensions :diameters inside shell without linerslengths working length shell between end liners.

The CIW is a Small Ball Mill thats belt driven, rigid bearing, wet grinding, trunnion or grate discharge type mill with friction clutch pulley and welded steel shell. The 7 and 8 foot diameter mills are of flange ring construction with cut gears while all other sizes have cast tooth gears. All these mills are standard with white iron bar wave type shell liners except the 8 foot diameter mill which is equipped with manganese steel liners. The horsepowers shown in the table are under running conditions so that high torque or wound rotor (slip ring) motors must be used. Manganese or alloy steel shell or head liners and grates can be supplied with all sizes of mills if required. Alloy steel shell liners are recommended where 4 or larger balls are used and particularly for the larger sized mills.

Small (Muleback Type) Ball Mill is built for muleback transportation in 30 and 3 diameters (inside liners). A 4 (Muleback Type) Ball Mill is of special design and will be carefully considered upon request. Mankinds search for valuable minerals often leads him far away from modern transportation facilities. The potential sources of gold, silver and strategic minerals are often found by the prospector, not close by our modern highways, but far back in the mountains and deserts all over the world. The Equipment Company has realized this fact, and therefore has designed a Ball Mill that can be transported to these faraway and relatively inaccessible properties, either by the age old muleback transportation system, or by the modern airplane. As a result these properties may now obtain a well-designed ball mill with the heaviest individual piece weighing only 350 pounds.

The prime factor considered in this design was to furnish equipment having a maximum strength with a minimum weight. For this reason, these mills are made of steel, giving a high tensile strength and light weight to the mills. The muleback design consists of the sturdy cast iron head construction on the 30 size and cast steel head construction on the larger sizes. The flanges on the heads are arranged to bolt to the rolled steel shell provided with flanged rings. When required, the total length of the shell may consist of several shell lengths flanged together to provide the desired mill length. Liners, bearings, gears and drives are similar to those standard on all Ball Mills.

This (Convertible) and Small Ball Mill is unique in design and is particularly adapted to small milling plants. The shell is cast in one piece with a flange for bolting to the head. In converting the mill from a 30x 18 to a 30x 36 unit with double the capacity, it is only necessary to secure a second cast shell (a duplicate of the first) and bolt it to the original section.

30 Convertible Ball Mills are furnished with scoop feeders with replaceable lips. Standard mills are furnished with liners to avoid replacement of the shell; however, themill can be obtained less liners. This ball mill is oftendriven by belts placed around the center, although gear drive units with cast gears can be furnished. A Spiral Screen can be attached to the discharge.

This mill may be used for batch or intermittent grinding, or mixing of dry or wet materials in the ore dressing industry, metallurgical, chemical, ceramic, or paint industries. The material is ground and mixed in one operation by rotating it together with balls, or pebbles in a hermetically sealed cylinder.

The cast iron shell which is bolted to the heads is made with an extra thick wall to give long wearing life. Two grate cleanout doors are provided on opposite sides of the shell by means of which the mill can be either gradually discharged and washed, while running, or easily and rapidly emptied and flushedout while shut down. Wash-water is introduced into the interior of the mill through a tapped opening in the trunnion. The mill may be lined with rubber, silex (buhrstone) or wood if desired.

The Hardinge Conical Ball Mill has been widely used with outstanding success in grinding many materials in a wide variety of fields. The conical mill operates on the principle of an ordinary ball mill with a certain amount of classification within the mill itself, due to its shape.

Sizes of conical mills are given in diameter of the cylindrical section in feet and the length of the cylindrical section in inches. Liners can be had of hard iron, manganese steel or Belgian Silex. Forged steel balls or Danish Flint Pebbles are used for the grinding media, depending upon the material being milled.

The Steel Head Ball-Rod Mill gives the ore dressing engineer a wide choice in grinding design so that he can easily secure a Ball-Rod Mill suited to his particular problem. The successful operation of any grinding unit is largely dependent on the method of removing the ground pulp. The Ball-Rod Mill is available with five types of discharge trunnions, each type obtainable in small, medium or large diameters. The types of discharge trunnions are:

The superiority of the Steel Head Ball-Rod Mill is due to the all steel construction. The trunnions are an integral part of the cast steel heads and are machined with the axis of the mill. The mill heads are assured against breakage due to the high tensile strength of cast steel as compared to that of the cast iron head found on the ordinary ball mill. Trunnion Bearings are made of high- grade nickel babbitt.

Steel Head Ball-Rod Mills can be converted intolarger capacity mills by bolting an additional shell lengthonto the flange of the original shell. This is possible because all Steel Head Ball or Rod Mills have bearings suitable for mills with length twice the diameter.

Head and shell liners for Steel Head Ball-Rod Mills are available in Decolloy (a chrome-nickel alloy), hard iron, electric steel, molychrome steel, and manganese steel. Drive gears are furnished either in cast tooth spur gear and pinion or cut tooth spur gear and pinion. The gears are furnished as standard on the discharge end of the mill, out of the way of the classifier return feed, but can be furnished at the mill feed end by request. Drives may be obtained according to the customers specifications.

Thats one characteristic of Traylor Ball Millsliked by ownersthey are built not only to do a first class job at low cost but to keep on doing it, year after year. Of course, that means we do not build as many mills as if they wore out quicklyor would we? but much as welike order, we value more the fine reputationTraylor Ball Mills have had for nearly threedecades.

Thats one characteristic of Traylor Ball Mills We dont aim to write specifications into thisliked by ownersthey are built not only to do advertisementlet it suffice to say that theresa first class job at low cost but to keep on do- a Traylor Ball Mills that will exactly fit anyanything it, year after year. Of course, that means requirement that anyone may have.

If this is true, there is significance in the factthat international Nicked and Climax Molybdenum, theworlds largest producers of two important steel alloys, areboth users of MARCY Mills exclusively. With international interest centered on increasingproduction of gold, it is even more significant that MARCYMills are the predominant choice of operators in everyimportants gold mining camp in the world.

Ball Mill. Intermediate and fine size reduction by grinding is frequently achieved in a ball mill in which the length of the cylindrical shell is usually 1 to 1.5 times the shell diameter. Ball mills of greater length are termed tube mills, and when hard pebbles rather than steel balls are used for the grinding media, the mills are known as pebble mills. In general, ball mills can be operated either wet or dry and are capable of producing products on the order of 100 pm. This duty represents reduction ratios as great as 100.

The ball mill, an intermediate and fine-grinding device, is a tumbling drum with a 40% to 50% filling of balls (usually steel or steel alloys). The material that is to be ground fills the voids between the balls. The tumbling balls capture the particles in ball/ball or ball/liner events and load them to the point of fracture. Very large tonnages can be ground with these devices because they are very effective material handling devices. The feed can be dry, with less than 3% moisture to minimize ball coating, or a slurry can be used containing 20% to 40% water by weight. Ball mills are employed in either primary or secondary grinding applications. In primary applications, they receive their feed from crushers, and in secondary applications, they receive their feed from rod mills, autogenous mills, or semiautogenous mills. Regrind mills in mineral processing operations are usually ball mills, because the feed for these applications is typically quite fine. Ball mills are sometimes used in single-stage grinding, receiving crusher product. The circuits of these mills are often closed with classifiers at high-circulating loads.

These loads maximize throughput at a desired product size. The characteristics of ball mills are summarized in the Table, which lists typical feed and product sizes. The size of the mill required to achieve a given task-that is, the diameter (D) inside the liners-can be calculated from the design relationships given. The design parameters must be specified.

The liner- and ball-wear equations are typically written in terms of an abrasion index (Bond 1963). The calculated liner and ball wear is expressed in kilograms per kilowatt-hour (kg/kWh), and when multiplied by the specific power (kWh/t), the wear rates are given in kilograms per ton of feed. The wear in dry ball mills is approximately one-tenth of that in wet ball mills because of the inhibition of corrosion. The efficiency of ball mills as measured relative to single-particle slow-compression loading is about 5%. Abrasion indices for five materials are also listed in the Table.

The L/D ratios of ball mills range from slightly less than 1:1 to something greater than 2:1. The tube and compartment ball mills commonly used in the cement industry have L/D ratios 2.75:1 or more. The fraction of critical speed that the mill turns depends on the application, and most mills operate at around 75% of critical speed. Increased speed generally means increased power, but as the simulations presented in Figure 3.26 show, it can also produce more wasted ball impacts on the liners above the toe. causing more wear and less breakage.

There are three principal forms of discharge mechanism. In the overflow ball mill, the ground product overflows through the discharge end trunnion. A diaphragm ball mill has a grate at thedischarge end. The product flows through the slots in the grate. Pulp lifters may be used to discharge the product through the trunnion, or peripheral ports may be used to discharge the product.

The majority of grinding balls are forged carbon or alloy steels. Generally, they are spherical, but other shapes have been used. The choice of the top (or recharge) ball size can be made using empirical equations developed by Bond or Azzaroni or by using special batch-grinding tests interpreted in the content of population balance models. The effect of changes in ball size on specific selection functions has been found to be different for different materials. A ball size-correction method can be used along with the specific selection function scale-up method to determine the best ball size. To do this, a set of ball size tests are performed in a batch mill from which the specific selection function dependence on ball size can be determined. Then, the mill capacities used to produce desired product size can be predicted by simulation using the kinetic parameter corresponding to the different ball sizes.

The mill liners used are constructed from cast alloy steels, wear-resistant cast irons, or polymer (rubber) and polymer metal combinations. The mill liner shapes often recommended in new mills are double-wave liners when balls less than 2.5 in. are used and single-wave liners when larger balls are used. Replaceable metal lifter bars are sometimes used. End liners are usually ribbed or employ replaceable lifters.

The typical mill-motor coupling is a pinion and gear. On larger mills two motors may be used, and in that arrangement two pinions drive one gear on the mill. Synchronous motors are well suited to the ball mill, because the power draw is almost constant. Induction, squirrel cage, and slip ring motors are also used. A high-speed motor running 600 to 1,000 rpm requires a speed reducer between the motor and pinion shaft. The gearless drive has been installed at a number of locations around the world.

ball mill for sale | mining and cement milling equipment

Anyang General International Co., Ltd. (AGICO Group) is a ball mills supplier. Our company is mainly engaged in the development, design, manufacture, installation and commissioning of various mining and cement milling equipment and a complete set of the industrial grinding line. AGICO Group was founded in 1997, registered capital 81.34 million yuan, covers an area of 66,000 square meters, has nearly 30,000 square meters of factory buildings and more than 150 sets of various production and processing equipment.

With more than 20 years of experience in the manufacturing and research of mineral and cement milling equipment, AGICO has more than 50 technical patents. All of our ball mills, vertical roller mill, rod mill and AG/SAG mill have passed the ISO9001 international quality system certification.

The ball mill has a vital role in the cement manufacturing process. The mixed raw materials (cement raw meal) before cement production and the finished products (cement clinker) after cement manufacture need to be ground by cement ball mill. The grinding media balls in the ball mill are used in cement plant to help grind blocky or granular grindable materials produced in the cement manufacturing process, so as to achieve the effect of grinding. Vertical roller mill(VRM) and clinker grinding mill and other cement grinding mill are also very common in cement plant.

Various ball mill machines, vertical roller mills and sag mills are widely used in the mining industry. Grate ball mills and raw mills are mostly used for mineral processing in some enterprises of mining industries. Wet ball mill and rod mill are commonly used in mineral processing production line, to grind various hardness ore materials. Customers who need to grind iron ore, siderite, marble, kaolin, mica, feldspar and other ores have chosen our mineral grinding machine.

AGICO uses the latest clean coal technology to create a professional pulverized coal ball mill. Coal mill can grind pulverized coal with different fineness requirements, with high fineness and large output, which can meet the needs of large pulverized coal projects. Coal mill is often used in thermal power plant, cement plant, coal fire power plants, etc. We grind large pieces of coal into pulverized coal, which produces more energy when burned. Therefore, the rotary kilns, boilers and other kiln equipment in these large factories usually use pulverized coal as fuel.

Efficient and energy-saving ball mill, intermittent ball mill, ceramic ball mill, rod ball mill. These types of ball mills can crush materials with different attributes. It is widely used in silicate products, new building materials, refractories, fertilizers, ferrous and non-ferrous metal smelting, glass ceramics and other production industries. Vertical mill, Raymond mill, ring roller mill which divided by different grinding methods can also be used for the production of phosphor powder, nano materials, zinc oxide powder, catalyst, rare earth polishing powder and other materials.

Production capacity: 300t/d Processed material: Silver ore Input size: 25mm Equipment: Wet grate type silver ore ball mill, wet overflow type silver ore ball mill, jaw crusher, cone crusher, flotation machine, concentrator, filter press. Auxiliary equipment: Linear vibration screen, cyclone. Request A Quote Right Now Free Solution Design: [email protected] Project Description Equipment Features Beneficiation Process

Production capacity: 1500t/d Processed material: Copper ore Input size: 25mm Equipment: 98-386t/h copper ball mill, jaw crusher, cone crusher, flotation machine, concentrator, filter press. Auxiliary equipment: Linear vibration screen, cyclone. Request A Quote Right Now Free Solution Design: [email protected] Project Description Equipment Features Beneficiation Process Project Description The 1500t/d Pakistan copper mine project uses a

Production capacity: Annual output of 300,000 tons Processed material: Soft coal Input size: 25mm Equipment: 5 sets of 20tph coal ball mill Auxiliary equipment: Desulfurization, denitrification, dust removal and other devices. Request A Quote Right Now Free Solution Design: [email protected] Project Description Equipment Features Solution Advantages Project Description The project is to build a high-efficiency

Influencing Factors of Tumbling Mill Working Capacity Tumbling mill is also known as a ball mill or rod mill. They are all composed of a cylindrical cylinder lying horizontally on the bearing, and the material is ground into powder by rotating the cylinder. When we want to discuss the factors that affect the tumbling mill

The grinding mill liners are the main wearing part of the ball mill equipment. The ball mill liner replacement should in time when the lining plate is excessively worn. Therefore, the selection and design of mill liners have always been of great concern to users. Function Design of Ball Mill Liners As one of professional

As a ball mills supplier with 22 years of experience in the grinding industry, we can provide customers with types of ball mill, vertical mill, rod mill and AG/SAG mill for grinding in a variety of industries and materials.

wet grinding mill suppliers, manufacturers - cost price wet grinding mill for sale - ele

Introduction ELE Wet grinding Mill is mature technology, reliable and advanced processing. Include three types horizontal bead mill, Turbo type, Pin type, Disc type, suitable for different application and different viscosity. Solve the problem of fineness, temperature, metal contaminationsetc...

IntroductionELE Wet grinding Mill is mature technology, reliable and advanced processing.Include three types horizontal bead mill, Turbo type, Pin type, Disc type, suitable for different application and different viscosity. Solve the problem of fineness, temperature, metal contaminationsetcWet grinding Millworkingtitle1title2ApplicationCoating: Water-based coating, Solvent-basedcoating, Decorative Coating, Latex paint;Paint: Car Paint, Finish paint, Wood paint, Industrialpaint;Ink: Gravure Printing ink, Flexographic ink, Offsetprinting ink, Silk screen ink, UV light solid ink, Digitalinkjet ink etc;Pigment:Dye, Color painted pigment, Pen liquidWatercolor;Electronic Materials: Battery diaphragm alumina, Lithium iron phosphate, Ceramic slurry, Flame retardant;Food Industry:Chocolate Syrup, Paste etc;Pesticide: Pesticide suspension, EC, EW, ME;Daily Chemical Industry: Cosmetics, Liquid soap, Shower gel, Liquid detergent etc;Biological Medicine: Algae cell fragmentation, Micro-biological functional materials;Nano Materials:metal oxide, Magnetic Materials, Paper industry, Optoelectronic industry.MAINTENANCE & SERVICES1.Before order, customer can take materials to ourvlab and make test grindings, spot-testing parameters like particle size distribution, obtain reliable data formodel selection;2.We provide you opeatian manual by chinese orEnglish;3.We offer you Videos for equipment installation andmaintenance in both English and Chinese;4.With three years of spare parts inventory to ensurenormal use and make you to be in trouble free;5.Within 12-months warranty period, we promise tochange damaged parts free of charge by air or bysea;6.After delivery, our professional engineer will offeron-site guidance debugging free of charge, according to different characteristic of materials, to set upthe operational parameters of the mill and ensureoptimal grinding quality & equipment runningstatus;7.After the warranty period, we provide maintenanceand maintenance service, only chargethe cost;8.Meanwhile, our skillful grinding experts can offeryou free professional technical consulting andservice.

Include three types horizontal bead mill, Turbo type, Pin type, Disc type, suitable for different application and different viscosity. Solve the problem of fineness, temperature, metal contaminationsetc

6.After delivery, our professional engineer will offeron-site guidance debugging free of charge, according to different characteristic of materials, to set upthe operational parameters of the mill and ensureoptimal grinding quality & equipment runningstatus;

ball mills

In all ore dressing and milling Operations, including flotation, cyanidation, gravity concentration, and amalgamation, the Working Principle is to crush and grind, often with rob mill & ball mills, the ore in order to liberate the minerals. In the chemical and process industries, grinding is an important step in preparing raw materials for subsequent treatment.In present day practice, ore is reduced to a size many times finer than can be obtained with crushers. Over a period of many years various fine grinding machines have been developed and used, but the ball mill has become standard due to its simplicity and low operating cost.

A ball millefficiently operated performs a wide variety of services. In small milling plants, where simplicity is most essential, it is not economical to use more than single stage crushing, because the Steel-Head Ball or Rod Mill will take up to 2 feed and grind it to the desired fineness. In larger plants where several stages of coarse and fine crushing are used, it is customary to crush from 1/2 to as fine as 8 mesh.

Many grinding circuits necessitate regrinding of concentrates or middling products to extremely fine sizes to liberate the closely associated minerals from each other. In these cases, the feed to the ball mill may be from 10 to 100 mesh or even finer.

Where the finished product does not have to be uniform, a ball mill may be operated in open circuit, but where the finished product must be uniform it is essential that the grinding mill be used in closed circuit with a screen, if a coarse product is desired, and with a classifier if a fine product is required. In most cases it is desirable to operate the grinding mill in closed circuit with a screen or classifier as higher efficiency and capacity are obtained. Often a mill using steel rods as the grinding medium is recommended, where the product must have the minimum amount of fines (rods give a more nearly uniform product).

Often a problem requires some study to determine the economic fineness to which a product can or should be ground. In this case the 911Equipment Company offers its complete testing service so that accurate grinding mill size may be determined.

Until recently many operators have believed that one particular type of grinding mill had greater efficiency and resulting capacity than some other type. However, it is now commonly agreed and accepted that the work done by any ballmill depends directly upon the power input; the maximum power input into any ball or rod mill depends upon weight of grinding charge, mill speed, and liner design.

The apparent difference in capacities between grinding mills (listed as being the same size) is due to the fact that there is no uniform method of designating the size of a mill, for example: a 5 x 5 Ball Mill has a working diameter of 5 inside the liners and has 20 per cent more capacity than all other ball mills designated as 5 x 5 where the shell is 5 inside diameter and the working diameter is only 48 with the liners in place.

Ball-Rod Mills, based on 4 liners and capacity varying as 2.6 power of mill diameter, on the 5 size give 20 per cent increased capacity; on the 4 size, 25 per cent; and on the 3 size, 28 per cent. This fact should be carefully kept in mind when determining the capacity of a Steel- Head Ball-Rod Mill, as this unit can carry a greater ball or rod charge and has potentially higher capacity in a given size when the full ball or rod charge is carried.

A mill shorter in length may be used if the grinding problem indicates a definite power input. This allows the alternative of greater capacity at a later date or a considerable saving in first cost with a shorter mill, if reserve capacity is not desired. The capacities of Ball-Rod Mills are considerably higher than many other types because the diameters are measured inside the liners.

The correct grinding mill depends so much upon the particular ore being treated and the product desired, that a mill must have maximum flexibility in length, type of grinding medium, type of discharge, and speed.With the Ball-Rod Mill it is possible to build this unit in exact accordance with your requirements, as illustrated.

To best serve your needs, the Trunnion can be furnished with small (standard), medium, or large diameter opening for each type of discharge. The sketch shows diagrammatic arrangements of the four different types of discharge for each size of trunnion opening, and peripheral discharge is described later.

Ball-Rod Mills of the grate discharge type are made by adding the improved type of grates to a standard Ball-Rod Mill. These grates are bolted to the discharge head in much the same manner as the standard headliners.

The grates are of alloy steel and are cast integral with the lifter bars which are essential to the efficient operation of this type of ball or rod mill. These lifter bars have a similar action to a pump:i. e., in lifting the product so as to discharge quickly through the mill trunnion.

These Discharge Grates also incorporate as an integral part, a liner between the lifters and steel head of the ball mill to prevent wear of the mill head. By combining these parts into a single casting, repairs and maintenance are greatly simplified. The center of the grate discharge end of this mill is open to permit adding of balls or for adding water to the mill through the discharge end.

Instead of being constructed of bars cast into a frame, Grates are cast entire and have cored holes which widen toward the outside of the mill similar to the taper in grizzly bars. The grate type discharge is illustrated.

The peripheral discharge type of Ball-Rod Mill is a modification of the grate type, and is recommended where a free gravity discharge is desired. It is particularly applicable when production of too many fine particles is detrimental and a quick pass through the mill is desired, and for dry grinding.

The drawings show the arrangement of the peripheral discharge. The discharge consists of openings in the shell into which bushings with holes of the desired size are inserted. On the outside of the mill, flanges are used to attach a stationary discharge hopper to prevent pulp splash or too much dust.

The mill may be operated either as a peripheral discharge or a combination or peripheral and trunnion discharge unit, depending on the desired operating conditions. If at any time the peripheral discharge is undesirable, plugs inserted into the bushings will convert the mill to a trunnion discharge type mill.

Unless otherwise specified, a hard iron liner is furnished. This liner is made of the best grade white iron and is most serviceable for the smaller size mills where large balls are not used. Hard iron liners have a much lower first cost.

Electric steel, although more expensive than hard iron, has advantage of minimum breakage and allows final wear to thinner section. Steel liners are recommended when the mills are for export or where the source of liner replacement is at a considerable distance.

Molychrome steel has longer wearing qualities and greater strength than hard iron. Breakage is not so apt to occur during shipment, and any size ball can be charged into a mill equipped with molychrome liners.

Manganese liners for Ball-Rod Mills are the world famous AMSCO Brand, and are the best obtainable. The first cost is the highest, but in most cases the cost per ton of ore ground is the lowest. These liners contain 12 to 14% manganese.

The feed and discharge trunnions are provided with cast iron or white iron throat liners. As these parts are not subjected to impact and must only withstand abrasion, alloys are not commonly used but can be supplied.

Gears for Ball-Rod Mills drives are furnished as standard on the discharge end of the mill where they are out of the way of the classifier return, scoop feeder, or original feed. Due to convertible type construction the mills can be furnished with gears on the feed end. Gear drives are available in two alternative combinations, which are:

All pinions are properly bored, key-seated, and pressed onto the steel countershaft, which is oversize and properly keyseated for the pinion and drive pulleys or sheaves. The countershaft operates on high grade, heavy duty, nickel babbitt bearings.

Any type of drive can be furnished for Ball-Rod Mills in accordance with your requirements. Belt drives are available with pulleys either plain or equipped with friction clutch. Various V- Rope combinations can also be supplied.

The most economical drive to use up to 50 H. P., is a high starting torque motor connected to the pinion shaft by means of a flat or V-Rope drive. For larger size motors the wound rotor (slip ring) is recommended due to its low current requirement in starting up the ball mill.

Should you be operating your own power plant or have D. C. current, please specify so that there will be no confusion as to motor characteristics. If switches are to be supplied, exact voltage to be used should be given.

Even though many ores require fine grinding for maximum recovery, most ores liberate a large percentage of the minerals during the first pass through the grinding unit. Thus, if the free minerals can be immediately removed from the ball mill classifier circuit, there is little chance for overgrinding.

This is actually what has happened wherever Mineral Jigs or Unit Flotation Cells have been installed in the ball mill classifier circuit. With the installation of one or both of these machines between the ball mill and classifier, as high as 70 per cent of the free gold and sulphide minerals can be immediately removed, thus reducing grinding costs and improving over-all recovery. The advantage of this method lies in the fact that heavy and usually valuable minerals, which otherwise would be ground finer because of their faster settling in the classifier and consequent return to the grinding mill, are removed from the circuit as soon as freed. This applies particularly to gold and lead ores.

Ball-Rod Mills have heavy rolled steel plate shells which are arc welded inside and outside to the steel heads or to rolled steel flanges, depending upon the type of mill. The double welding not only gives increased structural strength, but eliminates any possibility of leakage.

Where a single or double flanged shell is used, the faces are accurately machined and drilled to template to insure perfect fit and alignment with the holes in the head. These flanges are machined with male and female joints which take the shearing stresses off the bolts.

The Ball-Rod Mill Heads are oversize in section, heavily ribbed and are cast from electric furnace steel which has a strength of approximately four times that of cast iron. The head and trunnion bearings are designed to support a mill with length double its diameter. This extra strength, besides eliminating the possibility of head breakage or other structural failure (either while in transit or while in service), imparts to Ball-Rod Mills a flexibility heretofore lacking in grinding mills. Also, for instance, if you have a 5 x 5 mill, you can add another 5 shell length and thus get double the original capacity; or any length required up to a maximum of 12 total length.

On Type A mills the steel heads are double welded to the rolled steel shell. On type B and other flanged type mills the heads are machined with male and female joints to match the shell flanges, thus taking the shearing stresses from the heavy machine bolts which connect the shell flanges to the heads.

The manhole cover is protected from wear by heavy liners. An extended lip is provided for loosening the door with a crow-bar, and lifting handles are also provided. The manhole door is furnished with suitable gaskets to prevent leakage.

The mill trunnions are carried on heavy babbitt bearings which provide ample surface to insure low bearing pressure. If at any time the normal length is doubled to obtain increased capacity, these large trunnion bearings will easily support the additional load. Trunnion bearings are of the rigid type, as the perfect alignment of the trunnion surface on Ball-Rod Mills eliminates any need for the more expensive self-aligning type of bearing.

The cap on the upper half of the trunnion bearing is provided with a shroud which extends over the drip flange of the trunnion and effectively prevents the entrance of dirt or grit. The bearing has a large space for wool waste and lubricant and this is easily accessible through a large opening which is covered to prevent dirt from getting into the bearing.Ball and socket bearings can be furnished.

Scoop Feeders for Ball-Rod Mills are made in various radius sizes. Standard scoops are made of cast iron and for the 3 size a 13 or 19 feeder is supplied, for the 4 size a 30 or 36, for the 5 a 36 or 42, and for the 6 a 42 or 48 feeder. Welded steel scoop feeders can, however, be supplied in any radius.

The correct size of feeder depends upon the size of the classifier, and the smallest feeder should be used which will permit gravity flow for closed circuit grinding between classifier and the ball or rod mill. All feeders are built with a removable wearing lip which can be easily replaced and are designed to give minimum scoop wear.

A combination drum and scoop feeder can be supplied if necessary. This feeder is made of heavy steel plate and strongly welded. These drum-scoop feeders are available in the same sizes as the cast iron feeders but can be built in any radius. Scoop liners can be furnished.

The trunnions on Ball-Rod Mills are flanged and carefully machined so that scoops are held in place by large machine bolts and not cap screws or stud bolts. The feed trunnion flange is machined with a shoulder for insuring a proper fit for the feed scoop, and the weight of the scoop is carried on this shoulder so that all strain is removed from the bolts which hold the scoop.

High carbon steel rods are recommended, hot rolled, hot sawed or sheared, to a length of 2 less than actual length of mill taken inside the liners. The initial rod charge is generally a mixture ranging from 1.5 to 3 in diameter. During operation, rod make-up is generally the maximum size. The weights per lineal foot of rods of various diameters are approximately: 1.5 to 6 lbs.; 2-10.7 lbs.; 2.5-16.7 lbs.; and 3-24 lbs.

Forged from the best high carbon manganese steel, they are of the finest quality which can be produced and give long, satisfactory service. Data on ball charges for Ball-Rod Mills are listed in Table 5. Further information regarding grinding balls is included in Table 6.

Rod Mills has a very define and narrow discharge product size range. Feeding a Rod Mill finer rocks will greatly impact its tonnage while not significantly affect its discharge product sizes. The 3.5 diameter rod of a mill, can only grind so fine.

Crushers are well understood by most. Rod and Ball Mills not so much however as their size reduction actions are hidden in the tube (mill). As for Rod Mills, the image above best expresses what is going on inside. As rocks is feed into the mill, they are crushed (pinched) by the weight of its 3.5 x 16 rods at one end while the smaller particles migrate towards the discharge end and get slightly abraded (as in a Ball Mill) on the way there.

We haveSmall Ball Mills for sale coming in at very good prices. These ball mills are relatively small, bearing mounted on a steel frame. All ball mills are sold with motor, gears, steel liners and optional grinding media charge/load.

Ball Mills or Rod Mills in a complete range of sizes up to 10 diameter x20 long, offer features of operation and convertibility to meet your exactneeds. They may be used for pulverizing and either wet or dry grindingsystems. Mills are available in both light-duty and heavy-duty constructionto meet your specific requirements.

All Mills feature electric cast steel heads and heavy rolled steelplate shells. Self-aligning main trunnion bearings on large mills are sealedand internally flood-lubricated. Replaceable mill trunnions. Pinion shaftbearings are self-aligning, roller bearing type, enclosed in dust-tightcarrier. Adjustable, single-unit soleplate under trunnion and drive pinionsfor perfect, permanent gear alignment.

Ball Mills can be supplied with either ceramic or rubber linings for wet or dry grinding, for continuous or batch type operation, in sizes from 15 x 21 to 8 x 12. High density ceramic linings of uniform hardness male possible thinner linings and greater and more effective grinding volume. Mills are shipped with liners installed.

Complete laboratory testing service, mill and air classifier engineering and proven equipment make possible a single source for your complete dry-grinding mill installation. Units available with air swept design and centrifugal classifiers or with elevators and mechanical type air classifiers. All sizes and capacities of units. Laboratory-size air classifier also available.

A special purpose batch mill designed especially for grinding and mixing involving acids and corrosive materials. No corners mean easy cleaning and choice of rubber or ceramic linings make it corrosion resistant. Shape of mill and ball segregation gives preferential grinding action for grinding and mixing of pigments and catalysts. Made in 2, 3 and 4 diameter grinding drums.

Nowadays grinding mills are almost extensively used for comminution of materials ranging from 5 mm to 40 mm (3/161 5/8) down to varying product sizes. They have vast applications within different branches of industry such as for example the ore dressing, cement, lime, porcelain and chemical industries and can be designed for continuous as well as batch grinding.

Ball mills can be used for coarse grinding as described for the rod mill. They will, however, in that application produce more fines and tramp oversize and will in any case necessitate installation of effective classification.If finer grinding is wanted two or three stage grinding is advisable as for instant primary rod mill with 75100 mm (34) rods, secondary ball mill with 2540 mm(11) balls and possibly tertiary ball mill with 20 mm () balls or cylpebs.To obtain a close size distribution in the fine range the specific surface of the grinding media should be as high as possible. Thus as small balls as possible should be used in each stage.

The principal field of rod mill usage is the preparation of products in the 5 mm0.4 mm (4 mesh to 35 mesh) range. It may sometimes be recommended also for finer grinding. Within these limits a rod mill is usually superior to and more efficient than a ball mill. The basic principle for rod grinding is reduction by line contact between rods extending the full length of the mill, resulting in selective grinding carried out on the largest particle sizes. This results in a minimum production of extreme fines or slimes and more effective grinding work as compared with a ball mill. One stage rod mill grinding is therefore suitable for preparation of feed to gravimetric ore dressing methods, certain flotation processes with slime problems and magnetic cobbing. Rod mills are frequently used as primary mills to produce suitable feed to the second grinding stage. Rod mills have usually a length/diameter ratio of at least 1.4.

Tube mills are in principle to be considered as ball mills, the basic difference being that the length/diameter ratio is greater (35). They are commonly used for surface cleaning or scrubbing action and fine grinding in open circuit.

In some cases it is suitable to use screened fractions of the material as grinding media. Such mills are usually called pebble mills, but the working principle is the same as for ball mills. As the power input is approximately directly proportional to the volume weight of the grinding media, the power input for pebble mills is correspondingly smaller than for a ball mill.

A dry process requires usually dry grinding. If the feed is wet and sticky, it is often necessary to lower the moisture content below 1 %. Grinding in front of wet processes can be done wet or dry. In dry grinding the energy consumption is higher, but the wear of linings and charge is less than for wet grinding, especially when treating highly abrasive and corrosive material. When comparing the economy of wet and dry grinding, the different costs for the entire process must be considered.

An increase in the mill speed will give a directly proportional increase in mill power but there seems to be a square proportional increase in the wear. Rod mills generally operate within the range of 6075 % of critical speed in order to avoid excessive wear and tangled rods. Ball and pebble mills are usually operated at 7085 % of critical speed. For dry grinding the speed is usually somewhat lower.

The mill lining can be made of rubber or different types of steel (manganese or Ni-hard) with liner types according to the customers requirements. For special applications we can also supply porcelain, basalt and other linings.

The mill power is approximately directly proportional to the charge volume within the normal range. When calculating a mill 40 % charge volume is generally used. In pebble and ball mills quite often charge volumes close to 50 % are used. In a pebble mill the pebble consumption ranges from 315 % and the charge has to be controlled automatically to maintain uniform power consumption.

In all cases the net energy consumption per ton (kWh/ton) must be known either from previous experience or laboratory tests before mill size can be determined. The required mill net power P kW ( = ton/hX kWh/ton) is obtained from

Trunnions of S.G. iron or steel castings with machined flange and bearing seat incl. device for dismantling the bearings. For smaller mills the heads and trunnions are sometimes made in grey cast iron.

The mills can be used either for dry or wet, rod or ball grinding. By using a separate attachment the discharge end can be changed so that the mills can be used for peripheral instead of overflow discharge.

china laboratory ball mill for graphene grinding manufacturers & suppliers & factory - best price laboratory ball mill for graphene grinding for sale - deco

Lab ball mill is mainly used for mixing and fine grinding in labs, widely used in the fields of Geology, Mining, Metallurgy, Electronics, Construction Material, Ceramics, Chemical Engineering, Light Industry, Medicine, and Environmental Protection, etc.

Fours jars run counterclockwise installed on the main plate which runs clockwise simultaneously when the plate starts turning. Balls impact material at high speed which cuts, grinds and mixes particles. Dry and wet grinding and mixing various material to different granularities. Min. particle size of grinding result can be 0.1m. 2 or 4 jars working simultaneously.

* Capatible jars for the lab ball mill: 50ml/ 100ml 304SS, PA, PTFE, PU, Agate, Zirconia, Alumina, Tungsten carbide jar. Or 100ml 304SS vacuum/ gas protection jar, 50ml PA, PTFE, Agate, Zirconia, Alumina vacuum/ gas protection jar.

wet ball mill for metal ores and non-ferrous metals wet milling

Applications: It can deal with metal and non-metal ores, including gold, silver, copper, phosphate, iron, etc. The ore that needs to be separated and the material that will not affect the quality of the final product when encountering water.

Wet ball mill is a kind of equipment which uses grinding medium and a certain amount of liquid (water or anhydrous ethanol) to grind materials. Unlikedry ball mill, wet ball mill adopts the wet grinding method.

The characteristic of wet grinding is that the material needs to be soaked in the liquid for grinding. This method can effectively reduce the chance of the material properties changing due to the temperature increase during the grinding process.

In the process of grinding, due to the different grinding materials, a proper amount of water or anhydrous ethanol will be added to the wet grinding ball mill. Steel ball and liquid participate in the grinding process together. The common ratio of steel ball, material and water in the wet grinding mill is 4:2:1. Depending on the nature of the grinding material, the actual ratio will be adjusted, and the specific ratio needs to be determined through the beneficiation test.

The working principle of the wet ball mill is basically the same as that of the dry ball mill. Both the rotation of the barrel drives the grinding medium and the material in the barrel to move together, and the purpose of grinding the material is finally achieved through the action of dropping and squeezing.

With the continuous feeding of materials, the generated pressure forces the materials that are fed first and have reached the qualified particle size to move to the discharge port of the wet grinding mill. The discharge port of the wet grinding ball mill is of the trumpet type, with a built-in screw device. The water flows out along the screw device, and the qualified materials are taken out of the ball mill at the same time.

Because there is liquid involved in the grinding process, the wet grinding mill will not produce dust during the work process, so there is no need to add other auxiliary equipment. According to the different discharging methods, wet ball mill can be divided into overflow type andgrate type ball mill. Wet grinding ball mill is suitable for the treatment of materials with high moisture content, most of the ore will not produce physical or chemical reaction when encountering water, so it is also suitable for wet grinding.

As a ball mills supplier with 22 years of experience in the grinding industry, we can provide customers with types of ball mill, vertical mill, rod mill and AG/SAG mill for grinding in a variety of industries and materials.